Skip to main content
Log in

Crack Progression during Sustained-Peak Low-Cycle Fatigue in Single-Crystal Ni-Base Superalloy René N5

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Crack progression during compressive sustained-peak low-cycle fatigue (SPLCF) was examined in vapor phase aluminide coated single-crystal Ni-base superalloy René N5. Strain-controlled tests with a 120-second hold at compression were conducted at 1366 K (1093 °C) with A = –1 (R = –∞) and 0.35 pct total strain range, and were terminated at selected fractions of predicted life. Crack lengths on the surface and crack depth in longitudinal sections were examined for each specimen. All cracks appeared to have initiated at the coating surface. Failed specimens showed that cracks initially grew on (001), perpendicular to the stress axis, and then deflected to other crystallographic planes. Interrupted test specimens showed crevices initiated on the coating surface at less than 10 pct of the predicted life. The depths of crevices into the coating increased with cyclic exposure, but they did not penetrate into the substrate through the interdiffusion zone (IDZ) until about 80 pct of predicted life. Stress relaxation during compressive hold results in residual tension upon unloading. These results suggest that improving creep resistance of the substrate alloy and developing a coating system that can delay crack penetration into the substrate are keys for improved SPLCF life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. René N5 is a trademark of General Electric Company, Fairfield, CT.

References

  1. D.W. MacLachlan and D.M. Knowles: Fatigue Fract. Eng. Mater. Struct., 2001, vol. 24, pp. 503–21.

    Article  CAS  Google Scholar 

  2. S.X. Li and D.J. Smith: Fatigue Fract. Eng. Mater. Struct., 1995, vol. 18, pp. 617–29.

    Article  CAS  Google Scholar 

  3. S.X. Li and D.J. Smith: Fatigue Fract. Eng. Mater. Struct., 1995, vol. 18, pp. 631–43.

    Article  CAS  Google Scholar 

  4. J.X. Zhang, H. Harada, Y. Ro, Y. Koizumi, and T. Kobayashi: Acta Mater., 2008, vol. 56, pp. 2975–87.

    Article  CAS  Google Scholar 

  5. R. Ohtani, N. Tada, M. Shibata, and S. Tanuyama: Fatigue Fract. Eng. Mater. Struct., 2001, vol. 24, pp. 867–76.

    Article  CAS  Google Scholar 

  6. E. Fleury and L. Rémy: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 99–109.

    Article  CAS  ADS  Google Scholar 

  7. C.A. Yablinsky, K.M. Flores, M.J. Mills, J.C. Williams, and J. Rigney: Superalloys 2008, R.C. Reed, K.A. Green, P. Caron, T.P. Gabb, M.G. Fahrmann, E.S. Huron, and S.A. Woodard, eds., TMS, Warrendale, PA, 2008, pp. 535–40.

  8. M. Okazaki and Y. Yamazaki: Int. J. Fatigue, 1999, vol. 21, pp. S79–S86.

    Article  CAS  Google Scholar 

  9. T.C. Totemeier and J.E. King: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 353–61.

    Article  CAS  ADS  Google Scholar 

  10. T.C. Totemeier, W.F. Gale, and J.E. King: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 363–69.

    Article  CAS  ADS  Google Scholar 

  11. T.C. Totemeier, W.F. Gale, and J.E. King: Mater. Sci. Eng. A, 1993, vol. A169, pp. 19–26.

    CAS  Google Scholar 

  12. P. Moretto and J. Bressers: J. Mater. Sci., 1996, vol. 31, pp. 4817–29.

    Article  CAS  ADS  Google Scholar 

  13. M. Okazaki, M. Okamoto, and Y. Harada: Fatigue Fract. Eng. Mater. Struct., 2001, vol. 24, pp. 855–65.

    Article  CAS  Google Scholar 

  14. M. Okazaki: Sci. Technol. Adv. Mater., 2001, vol. 2, pp. 357–66.

    Article  CAS  Google Scholar 

  15. R. Kowalewski and H. Mughrabi: Mater. Sci. Eng. A, 1998, vol. A247, pp. 295–99.

    CAS  Google Scholar 

  16. M.W. Chen, M.L. Glynn, R.T. Ott, T.C. Hufnagel, and K.J. Hemker: Acta Mater., 2003, vol. 51, pp. 4279–94.

    Article  CAS  Google Scholar 

  17. S. Dryepondt and D.R. Clarke: Scripta Mater., 2009, vol. 60, pp. 917–20.

    Article  CAS  Google Scholar 

  18. T.M. Pollock and R.D. Field: in Dislocations in Solids, F.R.N. Nabarro and M.S. Duesbery, eds., Elsevier, Amsterdam, 2002, vol. 11, pp. 547–618.

Download references

Acknowledgments

The financial support by GE Aviation is gratefully acknowledged. The authors are deeply thankful to M. Larsen for the TEM observation and the FIB machining; L. Carroll (formerly GE Aviation), L. Iorio (GE Global Research), and A. Evans (University of California at Santa Barbara) for the helpful discussions; and S. Kalabekov (formerly GE Global Research) for the technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Suzuki.

Additional information

Manuscript submitted November 3, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, A., Gigliotti, M., Hazel, B. et al. Crack Progression during Sustained-Peak Low-Cycle Fatigue in Single-Crystal Ni-Base Superalloy René N5. Metall Mater Trans A 41, 947–956 (2010). https://doi.org/10.1007/s11661-009-0169-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-0169-7

Keywords

Navigation