Skip to main content
Log in

A Study of Submicron Grain Boundary Precipitates in Ultralow Carbon 316LN Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This article reports our efforts in characterization of an ultralow carbon 316LN-type stainless steel. The carbon content in the material is one-third that in a conventional 316LN, which further inhibits the formation of grain boundary carbides and therefore sensitizations. Our primary effort is focused on characterization of submicron size precipitates in the materials with the electron backscatter diffraction (EBSD) technique complemented by Auger electron spectroscopy (AES). Thermodynamic calculations suggested that several precipitates, such as M23C6, Chi, Sigma, and Cr2N, can form in a low carbon 316LN. In the steels heat treated at 973 K (700 °C) for 100 hours, a combination of EBSD and AES conclusively identified the grain boundary precipitates (≥100 nm) as Cr2N, which has a hexagonal closed-packed crystallographic structure. Increases of the nitrogen content promote formation of large size Cr2N precipitates. Therefore, prolonged heat treatment at relatively high temperatures of ultralow carbon 316LN steels may result in a sensitization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. LECO is a trademark of LECO Corporation, St. Joseph, MI.

References

  1. E.M. Mahla and N.A. Nielsen: Trans. ASM, 1951, vol. 43, pp. 290–322.

    Google Scholar 

  2. R. Stickler and A. Vinckier: Trans. ASM, 1961, vol. 54, pp. 362–80.

    CAS  Google Scholar 

  3. F.R. Beckitt and B.R. Clark: Acta Metall., 1967, vol. 15, pp. 113–29.

    Article  CAS  Google Scholar 

  4. L.K. Singhal and J.W. Martin: Trans. AIME, 1968, vol. 242, pp. 814–19.

    CAS  Google Scholar 

  5. C.D. Casa, V.B. Nileshwar, and D.A. Melford: J. Iron Steel Inst., 1969, vol. 207, pp. 1325–32.

    Google Scholar 

  6. G.F. Vander Voort: Metals Handbook, 10th ed., ASM, Metals Park, OH, 1990, vol. 1, pp. 706–08.

  7. W.O. Binder, C.M. Brown, and R. Franks: Trans. ASM, 1949, vol. 41, pp. 1301–70.

    Google Scholar 

  8. S.D. Washko and G. Aggen: Metals Handbook, 10th ed., ASM, Metals Park, OH, 1990, vol. 1, pp. 841–907.

  9. K. Han, Y. Xin, R.P. Walsh, S. Downey, and P.N. Kalu: Mater. Sci. Eng., 2009, vol. 516, pp. 169–79.

    Article  Google Scholar 

  10. M. Shimada and S. Tone: Adv. Cryst. Eng. Mater., 1988, vol. 34, pp. 131–39.

    CAS  Google Scholar 

  11. R.P. Reed, R.P. Walsh, and C.N. McCown: Adv. Cryog. Eng. Mater., 1992, vol. 38, pp. 45–54.

    CAS  Google Scholar 

  12. K. Miyahara, D.-S. Bae, T. Kimura, and Y. Shimode: J. Nucl. Mater., 1995, vol. 226, pp. 92–103.

    Article  CAS  ADS  Google Scholar 

  13. P. Shankar, H. Shaikh, S. Sivakumar, S. Venugopal, D. Sundararaman, and H.S. Khatak: J. Nucl. Mater., 1999, vol. 264, pp. 29–34.

    Article  CAS  ADS  Google Scholar 

  14. N. Parvathavarthini and R.K. Dyal: J. Nucl. Mater., 2002, vol. 305, pp. 209–19.

    Article  CAS  ADS  Google Scholar 

  15. H. Sahlaoui, K. Makhlouf, H. Sidhom, and J. Philibert: Mater. Sci. Eng. A, 2004, vol. 372, pp. 98–108.

    Article  Google Scholar 

  16. L. Klimek and B. Piertrzyk: J. Alloys Compd., 2004, vol. 382, pp. 17–23.

    Article  CAS  Google Scholar 

  17. J.A. Small and J.R. Michael: J. Microsc., 2001, vol. 201, pp. 59–69.

    Article  CAS  PubMed  MathSciNet  Google Scholar 

  18. S.I. Wright and B.L. Adams: Metall. Trans. A, 1992, vol. 23A, pp. 759–67.

    CAS  ADS  Google Scholar 

  19. S. Downey II, P.N. Kalu, and K. Han: Mater. Sci. Eng. A, 2008, vol. 480, pp. 96–100.

    Google Scholar 

  20. Y. Minami, H. Kimura, and Y. Ihara: Mater. Sci. Technol., 1986, vol. 2, pp. 795–806.

    CAS  Google Scholar 

  21. M.L. Saucedo-Munoz, Y. Watanabe, T. Shoji, and H. Takahashi: Cryogenics, 2000, vol. 40, pp. 693–700.

    Article  CAS  Google Scholar 

  22. C.R. Sokei, I. Ferreira, R.C. Tokimatsu, and V.A. Ventrella: Acta Microsc., 2003, vol. 12, pp. 9–10.

    Google Scholar 

  23. T.-H. Lee, S.-J. Kim, E. Shin, and S. Takaki: Acta Crystallogr., 2006, vol. B62, pp. 979–86.

    CAS  Google Scholar 

  24. N. Hashimoto, E. Wakai, and J.P. Robertson: J. Nucl. Mater., 1999, vol. 273, pp. 95–101.

    Article  CAS  ADS  Google Scholar 

  25. P. Shankar, P. Palanichamy, T. Jayakumar, B. Raj, and S. Ranganathan: Metall. Mater. Trans., 2001, vol. 32A, pp. 2959–68.

    Article  CAS  Google Scholar 

  26. P. Villars and L.D. Clavert: Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, 2nd ed., ASM INTERNATIONAL, Metals Park, OH, 1991, pp. 2694–95.

    Google Scholar 

  27. TSL User Manual-OIM Analysis 5.2, Ametek Inc.

  28. R.P. Walsh, L.T. Summers, and J.R. Miller: Proc. 16th CEC/ICMC Conf., T. Haruyama, T. Mitsui, and K. Yamafuji, eds., Kitakyushu, Japan, May 1996, Elsevier Science, New York, NY, 1996, pp. 1891–94.

  29. J. Feng: Fus. Eng. Des., 2005, vol. 73 (2–4), pp. 357–73.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was performed at the National High Magnetic Field Laboratory, which is supported by NSF Cooperative Agreement No. DMR-0654118, by the State of Florida, and by the DOE. The Auger work was undertaken at ORNL, which is supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of FreedomCAR and Vehicle Technologies, as part of the High Temperature Materials Laboratory User Program, ORNL, managed by UT–Battelle LLC for the United States Department of Energy under Contract No. DE-AC05-00OR22725. Part of this work was supported by the US ITER Office. We thank Dr. H.M. Meyer III for performing the Auger studies; Mr. R.E. Goddard for maintenance of the SEM equipments; Mr. V.J. Toplosky for performing some experiments; and Mr. R.P. Walsh, Drs. J.R. Miller, and L.T. Summers for helpful discussions. The views expressed in this article do not necessarily represent those of the United States Nuclear Regulatory Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Han.

Additional information

Manuscript submitted January 16, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Downey, S., Han, K., Kalu, P. et al. A Study of Submicron Grain Boundary Precipitates in Ultralow Carbon 316LN Steels. Metall Mater Trans A 41, 881–887 (2010). https://doi.org/10.1007/s11661-009-0163-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-0163-0

Keywords

Navigation