Metallurgical and Materials Transactions A

, Volume 41, Issue 7, pp 1726–1734 | Cite as

Biocompatibility Study of Zirconium-Based Bulk Metallic Glasses for Orthopedic Applications

Symposium: Bulk Metallic Glasses VI


Bulk metallic glasses (BMGs) represent an emerging class of materials that offer an attractive combination of properties, such as high strength, low modulus, good fatigue limit, and near-net-shape formability. The BMGs have been explored in mechanical, chemical, and magnetic applications. However, little research has been attracted in the biomedical field. In this work, we study the potential of BMGs for the orthopedic repair and replacement. We report the biocompatibility study of zirconium (Zr)–based solid BMGs using mouse osteoblast cells. Cell attachment, proliferation, and differentiation are compared to Ti-6Al-4V, a well-studied alloy biomaterial. Our in-vitro study has demonstrated that cells cultured on the Zr-based BMG substrate showed higher attachment, alkaline phosphatase activity, and bone matrix deposition compared to those grown on the control Ti alloy substrate. Cytotoxicity staining also revealed the remarkable viability of cells growing on the BMG substrates.


  1. 1.
    M. Navarro, A. Michiardi, O. Castano, and J.A. Planell: J. R. Soc. Interface, 2008, vol. 5, pp. 1137–58.CrossRefPubMedGoogle Scholar
  2. 2.
    D.R. Sumner and J.O. Galante: Clin. Orthop. Relat. Res., 1992, vol. 274, pp. 202–12.PubMedGoogle Scholar
  3. 3.
    M.L. Morrison, R.A. Buchanan, R.V. Leon, C.T. Liu, B.A. Green, P.K Liaw, and J.A. Horton: J. Biomed. Mater. Res., 2005, vol. 74A, pp. 430–38.CrossRefGoogle Scholar
  4. 4.
    C.A. Engh, J.D. Bobyn, and A.H. Glassman: J. Bone Joint Surg., 1987, vol. 69B, pp. 45–55.Google Scholar
  5. 5.
    C.J. Gilbert, R.O. Ritchie, and W.L. Johnson: Appl. Phys. Lett., 1997, vol. 71, pp. 476–78.CrossRefADSGoogle Scholar
  6. 6.
    J. Schroers and W.L. Johnson: Phys. Rev. Lett., 2004, vol. 93, p. 255506.CrossRefPubMedADSGoogle Scholar
  7. 7.
    A. Inoue and N. Nishiyama: MRS Bull., 2007, vol. 32, pp. 651–58.Google Scholar
  8. 8.
    S. Buzzi, K. Jin, P.J. Uggowitzer, S. Tosatti, I. Gerber, and J.F. Löffler: Intermetallics, 2006, vol. 14, pp. 729–34.CrossRefGoogle Scholar
  9. 9.
    L. Liu, C.L. Qiu, Q. Chen, K.C. Chan, and S.M. Zhang: J. Biomed. Mater. Res., 2008, vol. 86A, pp. 160–69.CrossRefGoogle Scholar
  10. 10.
    K.C. Popat, M. Eltgroth, T.J. LaTempa, C.A. Grimes, and T.A. Desai: Biomaterials, 2007, vol. 28, pp. 4880–88.CrossRefPubMedGoogle Scholar
  11. 11.
    Y.H. Liu, G. Wang, R.J. Wang, D.Q. Zhao, M.X. Pan, and W.H. Wang: Science, 2007, vol. 315, pp. 1385–88.CrossRefPubMedADSGoogle Scholar
  12. 12.
    S. Hiromoto, A.P. Tsai, M. Sumita, and T. Hanawa: Mater. Trans., 2001, vol. 42, pp. 656–59.CrossRefGoogle Scholar
  13. 13.
    S. Hiromoto, K. Asami, A.P. Tsai, and T. Hanawa: Mater. Trans., 2002, vol. 43, pp. 261–66.CrossRefGoogle Scholar
  14. 14.
    D.G. Castner and B.D. Ratner: Surf. Sci., 2002, vol. 500, pp. 28–60.CrossRefADSGoogle Scholar
  15. 15.
    P.I. Branemark: J. Prosthet. Dent., 1983, vol. 50, pp. 399–410.CrossRefPubMedGoogle Scholar
  16. 16.
    M.B. Guglielmotti, S. Renou, and R.L. Cabrini: Int. J. Oral Maxillofac. Implants, 1999, vol. 14, pp. 565–70.PubMedGoogle Scholar
  17. 17.
    O.B. Kulakov, A.A. Doktorov, S.V. D’Iakova, I. Denisov-Nikol’skii lul, and K.A. Grotz: Morfologiia, 2005, vol. 127, pp. 52–55.PubMedGoogle Scholar
  18. 18.
    R.L. Willaims, J.A. Hunt, and P. Tengvall: JBMR, 1995, vol. 29, pp. 1545–55.Google Scholar
  19. 19.
    C.M. Gundberg: Clin. Lab. Med., 2000, vol. 20, pp. 489–501.PubMedGoogle Scholar
  20. 20.
    G.G. Bellows, J.E. Aubin, and J.N.M. Heersche: Bone Miner., 1991, vol. 14, pp. 27–40.CrossRefPubMedGoogle Scholar
  21. 21.
    Y. Okazaki, S. Rao, Y. Ito, and T. Tateishi: Biomaterials, 1998, vol. 19, pp. 1197–1215.CrossRefPubMedGoogle Scholar
  22. 22.
    M. Niinomi: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 477–86.CrossRefADSGoogle Scholar
  23. 23.
    D.M. Brunette, P. Tengvall, M. Textor, and P. Thomsen: Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses and Medical Applications, Springer, New York, NY, 2001, pp. 174–76.Google Scholar
  24. 24.
    A.H. Brothers and D.C. Dunand: MRS Bull., 2007, vol. 32, pp. 639–43.Google Scholar
  25. 25.
    B.R. Barnard, P.K. Liaw, M.D. Demetriou, and W.L. Johnson: Corros. Sci., 2008, vol. 50, pp. 2135–39.CrossRefGoogle Scholar
  26. 26.
    M.D. Demetriou, C. Veazey, J.S. Harmon, J.P. Schramm, and W.L. Johnson: Phys. Rev. Lett., 2008, vol. 101, p. 145702.CrossRefPubMedADSGoogle Scholar
  27. 27.
    E.D. Spoerke, N.G. Murray, H. Li, L.C. Brinson, D.C. Dunand, and S.I. Stupp: Acta Biomater., 2005, vol. 1, pp. 523–33.CrossRefPubMedGoogle Scholar
  28. 28.
    T. Wada and A. Inoue: Mater. Trans., 2004, vol. 45, pp. 2761–65.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2010

Authors and Affiliations

  • Wei He
    • 1
    • 2
  • Andrew Chuang
    • 1
  • Zheng Cao
    • 1
  • Peter K. Liaw
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of TennesseeKnoxvilleUSA
  2. 2.Department of Mechanical, Aerospace, and Biomedical EngineeringUniversity of TennesseeKnoxvilleUSA

Personalised recommendations