Skip to main content
Log in

Peak Stir Zone Temperatures during Friction Stir Processing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The stir zone (SZ) temperature cycle was measured during the friction stir processing (FSP) of NiAl bronze plates. The FSP was conducted using a tool design with a smooth concave shoulder and a 12.7-mm step-spiral pin. Temperature sensing was accomplished using sheathed thermocouples embedded in the tool path within the plates, while simultaneous optical pyrometry measurements of surface temperatures were also obtained. Peak SZ temperatures were 990 °C to 1015 °C (0.90 to 0.97 T Melt) and were not affected by preheating to 400 °C, although the dwell time above 900 °C was increased by the preheating. Thermocouple data suggested little variation in peak temperature across the SZ, although thermocouples initially located on the advancing sides and at the centerlines of the tool traverses were displaced to the retreating sides, precluding direct assessment of the temperature variation across the SZ. Microstructure-based estimates of local peak SZ temperatures have been made on these and on other similarly processed materials. Altogether, the peak-temperature determinations from these different measurement techniques are in close agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Fiberfrax is a registered trademark of Unifrax, Niagara Falls, NY.

  2. Densimet 176 is a registered trademark of Plansee Tungsten Alloys, Saint Pierre en Faucigny, France.

References

  1. W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Templesmith, and C.J. Dawes: Great Britain Patent Application 9125978.8, Dec. 1991; U.S. Patent 5460317, Oct. 1995.

  2. R.S. Mishra: Adv. Mater. Processes, 2003, vol. 161, pp. 43–46.

    CAS  Google Scholar 

  3. R.S. Mishra, Z.Y. Ma, and I. Charit: Mater. Sci. Eng., A, 2003, vol. 341, pp. 307–10.

    Article  Google Scholar 

  4. T.J. Lienert, W.L. Stellwag, Jr., B.B. Grimmett, and R.W. Warke: Weld. J., 2003, vol. 82, pp. 1S–9S.

    Article  Google Scholar 

  5. L. Cui, H. Fujii, N. Tsuji, and K. Nogi: Scripta Mater., 2007, vol. 56, pp. 637–40.

    Article  CAS  Google Scholar 

  6. G. Buffa, J. Hua, R. Shivpuri, and L. Fratini: Mater. Sci. Eng., A, 2006, vol. 419, pp. 389–96.

    Article  Google Scholar 

  7. P. Vilaca, L. Quintino, J.F. dos Santos, R. Zettler, and S. Sheikhi: Mater. Sci. Eng., A, 2007, vols. 445–446, pp. 501–08.

    Google Scholar 

  8. K. Oh-Ishi and T.R. McNelley: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2951–61.

    Article  CAS  ADS  Google Scholar 

  9. K. Oh-Ishi and T.R. McNelley: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1575–85.

    Article  CAS  Google Scholar 

  10. K. Oh-Ishi, A.P. Zhilyaev, and T.R. McNelley: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2239–51.

    Article  CAS  ADS  Google Scholar 

  11. T.R. McNelley, K. Oh-Ishi, and A.P. Zhilyaev: in Friction Stir Welding and Processing, R.S. Mishra and M.W. Mahoney, eds., ASM INTERNATIONAL, Materials Park, OH, 2007, pp. 155–73.

    Google Scholar 

  12. E.A. Culpan and G. Rose: Br. Corros. J., 1979, vol. 14, pp. 160–66.

    CAS  Google Scholar 

  13. G.M. Weston: Survey of Nickel-Aluminum Bronze Casting Alloys for Marine Applications: Australia Department of Defence Report DSTO MRL-R807, Australia Department of Defence, Melbourne, Australia, 1981, pp. 1–38.

  14. P. Brezina: Int. Met. Rev., 1982, vol. 27, pp. 77–120.

    Google Scholar 

  15. E.A. Culpan and G. Rose: J. Mater. Sci., 1978, vol. 13, pp. 1647–57.

    Article  CAS  ADS  Google Scholar 

  16. G.W. Lorimer, F. Hasan, J. Iqbal, and N. Ridley: Br. Corros. J., 1986, vol. 21, pp. 244–48.

    CAS  Google Scholar 

  17. D.M. Lloyd, G.W. Lorimer, and N. Ridley: Met. Technol., 1980, vol. 7, pp. 114–19.

    CAS  Google Scholar 

  18. F. Hasan, G.W. Lorimer, and N. Ridley: Proc. Int. Conf. on Solid-to-Solid Phase Transformations, TMS, Warrendale, PA, 1982, pp. 745–49.

  19. F. Hasan, A. Jahanafrooz, G.W. Lorimer, and N. Ridley: Metall. Trans. A, 1982, vol. 13A, pp. 1337–45.

    ADS  Google Scholar 

  20. F. Hasan, G.W. Lorimer, and N. Ridley: J. Phys., 1982, vol. 43, pp. C4653–C4658.

    Google Scholar 

  21. A. Jahanafrooz, F. Hasan, G.W. Lorimer, and N. Ridley: Metall. Trans. A, 1983, vol. 14A, pp. 1951–56.

    CAS  ADS  Google Scholar 

  22. F. Hasan, G.W. Lorimer, and N. Ridley: Met. Sci., 1983, vol. 17, pp. 289–95.

    CAS  Google Scholar 

  23. F. Hasan, J. Iqbal, and N. Ridley: Mater. Sci. Technol., 1985, vol. 1, pp. 312–15.

    CAS  Google Scholar 

  24. P. Weill-Couly and D. Arnaud: Fonderie, 1973, No. 322, pp. 123–35.

  25. J.L. Robbins, O.C. Shepard, and O.D. Sherby: J. Iron Steel Inst., 1964, vol. 202, pp. 804–07.

    CAS  Google Scholar 

  26. O.D. Sherby, B. Walser, C.M. Young, and E.M. Cady: Scripta Metall., 1975, vol. 9, pp. 569–73.

    Article  CAS  Google Scholar 

  27. B. Walser and O.D. Sherby: Metall. Trans. A, 1979, vol. 10A, pp. 1461–71.

    CAS  ADS  Google Scholar 

  28. Metals Handbook: Properties and Selection of Nonferrous Metals and Special Purpose Materials, 10th ed., A. Cohen, ed., ASM INTERNATIONAL, Metals Park, OH, 1990, vol. 2, pp. 386–87.

  29. Y. Rabin and D. Rittel: Exp. Mech., 1999, vol. 39 (2), pp. 132–36.

    Article  Google Scholar 

  30. K.M. Garrity, D.C. Ripple, M. Araya, C.R. Cabrera, L. Cordova Murillo, M.E. de Vanegas, D.J. Gee, E. Guillén, S. Martinez-Martinez, E. Mendez-Lango, L. Mussio, S.G. Petkovic, K.N. Quelhas, G. Rangugni, O. Robatto, E. von Borries Rocha: Int. J Thermophys., 2008, vol. 29, pp. 1828–37.

    Article  CAS  Google Scholar 

  31. D. Rosenthal: Weld. J., 1941, vol. 20, pp. 220s-234s.

    Google Scholar 

  32. S. Kou: Welding Metallurgy, 2nd ed., J. Wiley, Hoboken, NJ, 2003, pp. 47–58.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge prior support and funding for this work from the Defense Advanced Projects Agency (DARPA) (Arlington, VA), with Dr. Leo Christodoulou as program sponsor, and current support from the Office of Naval Research (ONR) (Arlington, VA), under Contract Nos. N00014-06-WR-2-0196 and N00014-09-WR20201, with Drs. Julie Christodoulou, John Deloach, and Richard Fonda as program sponsors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry R. McNelley.

Additional information

Manuscript submitted June 4, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swaminathan, S., Oh-Ishi, K., Zhilyaev, A.P. et al. Peak Stir Zone Temperatures during Friction Stir Processing. Metall Mater Trans A 41, 631–640 (2010). https://doi.org/10.1007/s11661-009-0140-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-0140-7

Keywords

Navigation