Skip to main content
Log in

Plastic Flow and Microstructure Evolution during Low-Temperature Superplasticity of Ultrafine Ti-6Al-4V Sheet Material

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The low-temperature superplastic (SP) flow behavior of two lots of Ti-6Al-4V sheet, each with an ultrafine microstructure, was established by performing tension tests at temperatures of 775 °C and 815 °C and true strain rates of 10−4 and 10−3 s−1. The as-received microstructures of the two materials comprised either equiaxed or slightly elongated alpha particles in a beta matrix. The material with equiaxed alpha particles exhibited flow hardening, which was correlated with concurrent (dynamic) coarsening. The rate of dynamic coarsening was rationalized in terms of static coarsening measurements and the enhancement of kinetics due to pipe diffusion. By contrast, the material with initially elongated alpha particles exhibited comparable flow hardening at the lower strain rate but a complex, near-steady-state behavior at the higher strain rate. These latter observations were explained on the basis of the evolution of the alpha particle shape and size during straining; dynamic coarsening or dynamic spheroidization was concluded to be most important at the lower and higher strain rates, respectively. The plastic flow behavior was interpreted in the context of a long-wavelength flow localization analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Because of variations in stress and strain rate in the diffuse neck, the flow stress at the end of each tension test was obtained by extrapolating the portion of the flow curve prior to diffuse necking to the final average true strain.

References

  1. Ultrafine Grained Materials III, Y.T. Zhu, T.G. Langdon, R.Z. Valiev, S.L. Semiatin, D.H. Shin, and T.C. Lowe, eds., TMS, Warrendale, PA, 2004.

  2. Ultrafine Grained Materials IV, Y.T. Zhu, T.G. Langdon, Z. Horita, M.J. Zehetbauer, S.L. Semiatin, and T.C. Lowe, eds., TMS, Warrendale, PA, 2006.

  3. Proc. 2nd Int. Conf. on Nanomaterials by Severe Plastic Deformation: Fundamentals—Processing—Applications, M.J. Zehetbauer and R.Z. Valiev, eds., Wiley-VCH, Weinheim, Germany, 2004.

  4. A.K. Ghosh and C.H. Hamilton: Metall. Trans. A, 1979, vol. 10A, pp. 699–706.

    CAS  ADS  Google Scholar 

  5. S.M.L. Sastry, R.J. Lederich, T.L. Mackay, and W.R. Kerr: J. Met., 1983, vol. 35 (1), pp. 48–53.

    Google Scholar 

  6. H. Inagaki: Z. Metallkd., 1995, vol. 86, pp. 643–50.

    CAS  Google Scholar 

  7. S.V. Zherebstov, G.A. Salishchev, R.M. Galeyev, O.R. Valiakhmetov, and S.L. Semiatin: Proc. 2nd Int. Conf. on Nanomaterials by Severe Plastic Deformation: Fundamentals—Processing—Applications, M.J. Zehetbauer and R.Z. Valiev, eds., Wiley-VCH, Weinheim, Germany, 2004, pp. 835–40.

  8. G.A. Salishchev, R.M. Galeyev, O.R. Valiakhmetov, R.V. Safiullin, R.Y. Lutfullin, O.N. Senkov, F.H. Froes, and O.A. Kaibyshev: J. Mater. Process. Technol., 2001, vol. 116, pp. 265–68.

    Article  CAS  Google Scholar 

  9. Y.G. Ko, C.S. Lee, D.H. Shin, and S.L. Semiatin: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 381–91.

    Article  CAS  Google Scholar 

  10. A.K. Ghosh: University of Michigan, Ann Arbor, MI, unpublished research, 2006.

  11. A.V. Sergueeva, V.V. Stolyarov, R.Z. Valiev, and A.K. Mukherjee: Mater. Sci. Eng., A, 2002, vol. A323, pp. 318–25.

    CAS  Google Scholar 

  12. R.S. Mishra, V.V. Stolyarov, C. Echer, R.Z. Valiev, and A.K. Mukherjee: Mater. Sci. Eng., A, 2001, vol. A298, pp. 44–50.

    CAS  Google Scholar 

  13. P.N. Comley: J. Mater. Eng. Perform., 2004, vol. 13, pp. 660–64.

    Article  CAS  Google Scholar 

  14. S.N. Patankar, J.P. Escobedo, D.P. Field, G. Salishchev, R.M. Galeyev, O.R. Valiakhmetov, and F.H. Froes: J. Alloys Compd., 2002, vol. 345, pp. 221–27.

    Article  CAS  Google Scholar 

  15. P.N. Comley: Mater. Sci. Forum, 2004, vols. 447–448, pp. 233–38.

    Article  Google Scholar 

  16. G.A. Sargent, A.P. Zane, P.N. Fagin, A.K. Ghosh, and S.L. Semiatin: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2949–64.

    Article  CAS  ADS  Google Scholar 

  17. J.A. Wert and N.E. Paton: Metall. Trans. A, 1983, vol. 14A, pp. 2535–44.

    CAS  ADS  Google Scholar 

  18. P.A. Friedman and A.K. Ghosh: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3030–42.

    Article  CAS  ADS  Google Scholar 

  19. S.L. Semiatin and J.J. Jonas: Formability and Workability of Metals: Plastic Instability and Flow Localization, ASM, Metals Park, OH, 1984.

    Google Scholar 

  20. S.L. Semiatin, A.K. Ghosh, and J.J. Jonas: Metall. Trans. A, 1985, vol. 16A, pp. 2291–98.

    ADS  Google Scholar 

  21. R.C. Gifkins: Metall. Trans. A, 1976, vol. 7A, pp. 1225–32.

    CAS  ADS  Google Scholar 

  22. M. Kawasaki and T.G. Langdon: J. Mater. Sci., 2007, vol. 42, pp. 1782–96.

    Article  CAS  ADS  Google Scholar 

  23. S.L. Semiatin, M.W. Corbett, P.N. Fagin, G.A. Salishchev, and C.S. Lee: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1125–36.

    Article  CAS  ADS  Google Scholar 

  24. C.S. Smith: Trans. AIME, 1948, vol. 175, pp. 47–48.

    Google Scholar 

  25. J.E. Bird, A.K. Mukherjee, and J.E. Dorn: in Quantitative Relation between Microstructure and Properties, D.G. Brandon and A. Rosen, eds., Israel Universities Press, Jerusalem, Israel, 1969, pp. 255–342.

    Google Scholar 

  26. S.L. Semiatin and G.A. Sargent: Key Eng. Mater., 2009, in press.

  27. E.B. Shell and S.L. Semiatin: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 3219–29.

    Article  CAS  Google Scholar 

  28. S.L. Semiatin, V. Seetharaman, and I. Weiss: Mater. Sci. Eng., A, 1999, vol. A263, pp. 257–71.

    CAS  Google Scholar 

  29. S.L. Semiatin, N. Stefansson, and R.D. Doherty: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1372–76.

    Article  CAS  Google Scholar 

  30. S.L. Semiatin and T.R. Bieler: Acta Mater., 2001, vol. 49, pp. 3565–73.

    Article  CAS  Google Scholar 

  31. M.G. Zelin and A.K. Mukherjee: Mater. Sci. Eng., A, 1996, vol. A208, pp. 210–25.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was conducted as part of the in-house research of the Metals Processing Group of the Materials and Manufacturing Directorate of the Air Force Research Laboratory. The support and encouragement of the Laboratory management and the Air Force Office of Scientific Research (Dr. J. Fuller, program manager) are gratefully acknowledged. One of the authors (GAS) was supported under Air Force Contract No. FA8650-04-D-5235. Technical discussions with P.N. Comley and D.G. Sanders (Boeing Company, Seattle, WA), who supplied the material, and Professor C.S. Lee (Pohang University of Science and Technology, Pohang, Korea) are also greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.L. Semiatin.

Additional information

Manuscript submitted May 22, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semiatin, S., Fagin, P., Betten, J. et al. Plastic Flow and Microstructure Evolution during Low-Temperature Superplasticity of Ultrafine Ti-6Al-4V Sheet Material. Metall Mater Trans A 41, 499–512 (2010). https://doi.org/10.1007/s11661-009-0131-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-0131-8

Keywords

Navigation