Skip to main content
Log in

A Novel Approach to the Prediction of Long-Term Creep Fracture, with Application to 18Cr-12Ni-Mo Steel (Bar, Plate, and Tube)

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Designers of new power-generation plants are looking to make use of new and existing high-strength austenitic steels so that these plants can operate with much higher steam and, therefore, metal temperatures. However, this article shows that the Wilshire–Scharning methodology is incapable of producing accurate long-term-life predictions of these materials from short-term data. This article puts forward a modification of this approach that should enable existing and newly developed austenitic stainless steels to be brought into safe operation more cost effectively and over a shorter time span. The estimation of this model showed that the activation energy for creep was dependent on whether the test stress was above or below the yield stress. Analysis of the results from tests lasting only up to 5000 hours accurately predict the creep lives for stress-temperature conditions, causing failure in 100,000 hours or more.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W. Bendrick and J. Gabrel: in Creep and Fracture in High Temperature Components—Design and Life Assessment Issues, I.A. Shibli et al., eds., DEStech Publications, Inc., London, 2005, pp. 406–18.

    Google Scholar 

  2. K. Kimura: in Creep and Fracture in High Temperature Components—Design and Life Assessment Issues, I.A. Shibli et al., eds., DEStech Publications, Inc., London, 2005, pp. 1009–41022.

    Google Scholar 

  3. L. Cipolla and J. Gabrel: Super-High Strength Steels, Associazione Italia di Metallurgia, Rome, 2005, CD-ROM.

  4. K. Yagi: in Creep and Fracture in High Temperature Components—Design and Life Assessment Issues, I.A. Shibli et al., eds., DEStech Publications, Inc., London, 2005, pp. 31–45.

    Google Scholar 

  5. B. Wilshire and A.J. Battenbough: Mater. Sci. Eng., A, 2007, vol. A443, pp. 156–66.

    CAS  Google Scholar 

  6. B. Wilshire and P.J. Scharning: Mater. Sci. Technol., 2008, vol. 24, pp. 1–9.

    Article  CAS  Google Scholar 

  7. B. Wilshire and P.J. Scharning: Int. Mater. Rev., 2008, vol. 53, pp. 91–104.

    Article  CAS  Google Scholar 

  8. B. Wilshire and P.J. Scharning: Mater. Sci. Technol., 2009, vol. 25, pp. 242–48.

    Article  CAS  Google Scholar 

  9. B. Wilshire, P.J. Scharning, and R. Hurst: Mater. Sci. Eng., A, 2009, vol. 510, pp. 3–6.

    Article  Google Scholar 

  10. M. Evans: J. Eng. Mater. Technol., 2009, vol. 131, pp. 021011-1–021011-14.

    Article  Google Scholar 

  11. M.W. Spindler and H. Andersson: in Advances in Materials Technology for Fossil Power Plants—Proc. 5th Int. Conf., R. Viswanathan, D. Gandy, and K. Coleman, eds., Marco Island, FL, 2007, pp. 702–17.

  12. I.I. Trunin, N.G. Golobova, and E.A. Loginov: Proc. 4th Int. Symp. on Heat Resistant Metallic Materials, 1971, Mala Fatra, Czechoslovak Soviet Socialist Republic, p. 168.

  13. NIMS Creep Data Sheet No. 14B, 1988.

  14. NIMS Creep Data Sheet No. 15B, 1988.

  15. NIMS Creep Data Sheet No. 6B, 2000.

  16. Stainless Steels: An ASM Specialty Handbook, J.R. Davies, ed., ASM INTERNATIONAL, Materials Park, OH, 1994, p. 53.

  17. R. Jackowski and J.W. Freeman: Report 249, The Timken Roller Bearing Company Steel and Tube Division, Canton, OH, The University of Michigan, Office of Research Administration, Ann Arbor, MI, 1965.

  18. NIMS Creep Data Sheet No. 9B, 1990.

  19. M. Rieth: J. Nucl. Mater., 2007, pp. 367–70.

  20. G.E.P. Box and D.R. Cox: J. R. Stat. Soc., Ser. B, 1962, pp. 211–43.

  21. B. Wilshire and M. Willis: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 563–71.

    Article  CAS  ADS  Google Scholar 

  22. R.C. Gifkins: Metall. Trans. A, 1976, vol. 7A, pp. 1225–32.

    CAS  ADS  Google Scholar 

  23. M.F. Ashby and D.R.H. Jones: Engineering Materials 1: An Introduction to Their Properties and Applications, Butterworth-Heinemann, Oxford, United Kingdom, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Evans.

Additional information

Manuscript submitted July 7, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, M. A Novel Approach to the Prediction of Long-Term Creep Fracture, with Application to 18Cr-12Ni-Mo Steel (Bar, Plate, and Tube). Metall Mater Trans A 41, 318–328 (2010). https://doi.org/10.1007/s11661-009-0129-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-0129-2

Keywords

Navigation