Skip to main content

Advertisement

Log in

Influence of Al on the Microstructural Evolution and Mechanical Behavior of Low-Carbon, Manganese Transformation-Induced-Plasticity Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Microstructural design with an Al addition is suggested for low-carbon, manganese transformation-induced-plasticity (Mn TRIP) steel for application in the continuous-annealing process. With an Al content of 1 mass pct, the competition between the recrystallization of the cold-rolled microstructure and the austenite formation cannot be avoided during intercritical annealing, and the recrystallization of the deformed matrix does not proceed effectively. The addition of 3 mass pct Al, however, allows nearly complete recrystallization of the deformed microstructure by providing a dual-phase cold-rolled structure consisting of ferrite and martensite and by suppressing excessive austenite formation at a higher annealing temperature. An optimized annealing condition results in the room-temperature stability of the intercritical austenite in Mn TRIP steel containing 3 mass pct Al, permitting persistent transformation to martensite during tensile deformation. The alloy presents an excellent strength-ductility balance combining a tensile strength of approximately 1 GPa with a total elongation over 25 pct, which is comparable to that of Mn TRIP steel subjected to batch-type annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B.C. De Cooman: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 285–303.

    Article  Google Scholar 

  2. J. Bouquerel, K. Verbeken, and B.C. De Cooman: Acta Mater., 2006, vol. 54, pp. 1443–56.

    Article  CAS  Google Scholar 

  3. S. Zaefferer, J. Ohlert, and W. Bleck: Acta Mater., 2002, vol. 52, pp. 2765–78.

    Article  Google Scholar 

  4. C. Jing, D.W. Suh, C.S. Oh, Z. Wang, and S.J. Kim: Met. Mater.-Int., 2007, vol. 13, pp. 13–19.

    Article  CAS  Google Scholar 

  5. C.P. Scott and J. Drillet: Scripta Mater., 2007, vol. 56, pp. 489–92.

    Article  CAS  Google Scholar 

  6. P. J. Jacques: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 259–65.

    Article  CAS  Google Scholar 

  7. K. Sugimoto, M. Murata, T. Muramatsu, and Y. Mukai: ISIJ Int., 2007, vol. 47, pp. 1357–62.

    Article  CAS  Google Scholar 

  8. D.K. Matlock and J.G. Speer: Proc. 3rd Int. Conf. on Advanced Structural Steels, KIM, Gyeongjoo, Korea, 2006, pp. 744–81.

  9. R.L. Miller: Metall. Trans., 1972, vol. 3, pp. 905–12.

    Article  CAS  Google Scholar 

  10. T. Furukawa, H. Huang, and O. Matsumura: Mater. Sci. Technol., 1994, vol. 10, pp. 964–69.

    CAS  Google Scholar 

  11. H. Huang, O. Matsumura, and T. Furukawa: Mater. Sci. Technol., 1994, vol. 10, pp. 621–26.

    CAS  Google Scholar 

  12. H. Takechi: JOM, 2008, vol. 60, pp. 22–26.

    Article  ADS  Google Scholar 

  13. D.W. Suh, S.J. Park, C.S. Oh, and S.J. Kim: Scripta Mater., 2007, vol. 57, pp. 1097–1100.

    Article  CAS  Google Scholar 

  14. Thermo-Calc Software, Version R, User’s Guide, Thermo-calc software AB, Stockholm, Sweden, 2007.

  15. B.J. Lee: POSTECH, Pohang, Korea, private communication, 2008.

  16. C.F. Jatczak: SAE Technical Paper Series 800426, SAE, PA, 1980, pp. 1–20.

  17. B.C. Cullity: Elements of X-Ray Diffraction, Addison-Wesley, London, 1978, pp. 517–18.

    Google Scholar 

  18. “ASTM E8M-03 Standard Test Methods for Tension Testing of Metallic Materials,” Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, 2003, vol. 03.01, pp. 1–24.

  19. S.W. Thompson and P.R. Howell: Mater. Sci. Technol., 1992, vol. 8, pp. 777–84.

    CAS  Google Scholar 

  20. D.W. Suh, S.J. Park, and S.J. Kim: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2015–19.

    Article  CAS  ADS  Google Scholar 

  21. F. Heidelbach, H.R. Wenk, S.R. Chen, J. Pospiech, and S.I. Wright: Mater. Sci. Eng., 1996, vol. A215, pp. 39–49.

    CAS  Google Scholar 

  22. F.J. Humphreys and M. Ferry: Mater. Sci. Technol., 1997, vol. 13, pp. 85–90.

    CAS  Google Scholar 

  23. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Elsevier, Oxford, United Kingdom, 1995, pp. 8–9.

    Google Scholar 

  24. J. Wang and S.V.D. Zwaag: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1527–39.

    Article  CAS  ADS  Google Scholar 

  25. D.W. Suh, S.J. Park, C.H. Lee, and S.J. Kim: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 264–68.

    Article  CAS  ADS  Google Scholar 

  26. S. Turteltaub and A.S.J. Suiker: Int. J. Solids Struct., 2006, vol. 43, pp. 7322–36.

    Article  MATH  CAS  Google Scholar 

  27. J. Mahieu, J. Maki, B.C. De Cooman, and S. Claessens: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2573–80.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Woo Suh.

Additional information

Manuscript submitted April 3, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suh, DW., Park, SJ., Lee, TH. et al. Influence of Al on the Microstructural Evolution and Mechanical Behavior of Low-Carbon, Manganese Transformation-Induced-Plasticity Steel. Metall Mater Trans A 41, 397–408 (2010). https://doi.org/10.1007/s11661-009-0124-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-0124-7

Keywords

Navigation