Skip to main content
Log in

Strain-Rate Sensitivity and Failure Peculiarities in Compression of the Nanocrystalline Ni-20 Pct Fe Alloy at Low Temperatures

  • Symposium: Mechanical Behavior of Nanostructured Materials
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The strain-rate sensitivity of the applied stress was measured, and the values of the activation volume of the process of the plastic deformation V along the deformation curve in compression of the nanocrystalline (NC) Ni-20 pct Fe alloy (with average grain size ~22 nm) in the temperature range of 300 to 77 K (27 to −196 °C) were calculated. It was found that the decrease of the temperature from 300 to 77 K leads to a decrease of the value of V from 20 to 8 b 3, and values of V do not depend on the strain. Fractographic features of the failure surfaces were studied in the temperature range 300 to 4.2 K (27 to −269 °C). Observed traces of melting on these surfaces at temperatures below 300 K indicate the intense heating in the catastrophic shear band of the alloy in the moment of failure. Causes of low-temperature decohesion along grain boundaries are discussed in terms of the sulfur segregation influence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H.S. Kim, Y. Estrin, and M.B. Bush: Acta Mater., 2000, vol. 48, pp. 493–504.

    Article  CAS  Google Scholar 

  2. R.J. Asaro and S. Suresh: Acta Mater., 2005, vol. 53, pp. 3369–82.

    Article  CAS  Google Scholar 

  3. Y.M. Wang, A.V. Hamza, and E. Ma: Appl. Phys. Lett., 2005, vol. 86, pp. 2419171–73.

    Google Scholar 

  4. M.A. Meyers, A. Mishra, and D.J. Benson: Prog. Mater. Sci., 2006, vol. 51, pp. 427–556.

    Article  CAS  Google Scholar 

  5. J.K. Mason, A.C. Lund, and C.A. Schuh: Phys. Rev. B, 2006, vol. 73, pp. 054102–15.

    Article  ADS  Google Scholar 

  6. H. Vehoff, D. Lemaire, K. Schuler, T. Waschkies, and B. Yang: Int. J. Mater. Res., 2007, vol. 98, pp. 259–68.

    CAS  Google Scholar 

  7. W.M. Mook, M.S. Lund, C. Leighton, and W.W. Gerberich: Mater. Sci. Eng. A, 2008, vol. 493, pp. 12–20.

    Article  Google Scholar 

  8. E.D. Tabachnikova, A.V. Podolskiy, V.Z. Bengus, S.N. Smirnov, M.I. Bidylo, H. Li, P.K. Liaw, H. Choo, K. Csach, and J. Miskuf: Mater. Sci. Eng. A, 2009, vol. 503, pp. 110–13.

    Article  Google Scholar 

  9. A.G. Evans and R.D. Rawlings: Phys. Status Solidi, 1969, vol. 34, pp. 9–31.

    Article  CAS  Google Scholar 

  10. H. Li, F. Ebrahimi, H. Choo, and P.K. Liaw: J Mater. Sci., 2006, vol. 41, pp. 7636–42.

    Article  CAS  ADS  Google Scholar 

  11. H. Li and F. Ebrahimi: Mater. Sci. Eng. A, 2003, vol. 347, pp. 93–101.

    Article  Google Scholar 

  12. E.D. Tabachnikova, A.V. Podolskiy, V.Z. Bengus, S.N. Smirnov, K. Csach, J. Miskuf, L.R. Saitova, I.P. Semenova, and R.Z. Valiev: Strength Mater., 2008, vol. 40, pp. 71–74.

    Article  CAS  Google Scholar 

  13. J.K. Heuer, P.R. Okamoto, N.Q. Lam, and J.F. Stubbins: Appl. Phys. Lett., 2000, vol. 76, pp. 3403–05.

    Article  CAS  ADS  Google Scholar 

  14. M. Yamaguchi, M. Shiga, and H. Kaburaki: Science, 2005, vol. 307 (5708), pp. 393–97.

    Article  CAS  PubMed  ADS  Google Scholar 

  15. W.T. Geng, J.-S. Wang, and G.B. Olson: Science, 2005, vol. 309 (5741), p. 1677.

    Article  CAS  PubMed  Google Scholar 

  16. H.J. Klam, H. Hahn, and H. Gleiter: Acta Metall., 1987, vol. 35 (8), pp. 2101–04.

    Article  CAS  Google Scholar 

  17. V.Z. Bengus, E.D. Tabachnikova, S.E. Shumilin, Y.I. Golovin, M.V. Makarov, A.A. Shibkov, J. Miskuf, K. Csach, and V. Ocelik: Int. J. Rapid Solidification, 1993, vol. 8, pp. 21–31.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E.D. Tabachnikova.

Additional information

This article is based on a presentation given in the symposium entitled “Mechanical Behavior of Nanostructured Materials,” which occurred during the TMS Spring Meeting in San Francisco, CA, February 15–19, 2009, under the auspices of TMS, the TMS Electronic, Magnetic, and Photonic Materials Division, the TMS Materials Processing and Manufacturing Division, the TMS Structural Materials Division, the TMS Nanomechanical Materials Behavior Committee, the TMS Chemistry and Physics of Materials Committee, and the TMS/ASM Mechanical Behavior of Materials Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tabachnikova, E., Podolskiy, A., Bengus, V. et al. Strain-Rate Sensitivity and Failure Peculiarities in Compression of the Nanocrystalline Ni-20 Pct Fe Alloy at Low Temperatures. Metall Mater Trans A 41, 848–853 (2010). https://doi.org/10.1007/s11661-009-0121-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-0121-x

Keywords

Navigation