Skip to main content
Log in

Atomic-Scale Study of Plastic-Yield Criterion in Nanocrystalline Cu at High Strain Rates

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Large-scale molecular dynamics (MD) simulations are used to understand the macroscopic yield behavior of nanocrystalline Cu with an average grain size of 6 nm at high strain rates. The MD simulations at strain rates varying from 109 s−1 to 8 × 109 s−1 suggest an asymmetry in the flow stress values in tension and compression, with the nanocrystalline metal being stronger in compression than in tension. The tension-compression strength asymmetry is very small at 109 s−1, but increases with increasing strain rate. The calculated yield stresses and flow stresses under combined biaxial loading conditions (X-Y) gives a locus of points that can be described with a traditional ellipse. An asymmetry parameter is introduced that allows for the incorporation of the small tension-compression asymmetry. The biaxial yield surface (X-Y) is calculated for different values of stress in the Z direction, the superposition of which gives a full three-dimensional (3-D) yield surface. The 3-D yield surface shows a cylinder that is symmetric around the hydrostatic axis. These results suggest that a von Mises-type yield criterion can be used to understand the macroscopic deformation behavior of nanocrystalline Cu with a grain size in the inverse Hall–Petch regime at high strain rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K.J. Hemker: Science, 2004, vol. 304, pp. 221–23.

    Article  CAS  PubMed  Google Scholar 

  2. V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter: Nat. Mater., 2002, vol. 1, pp. 45–49.

    Article  CAS  PubMed  ADS  Google Scholar 

  3. V. Yamakov, D. Wolf, M. Salazar, S.R. Phillpot, and H. Gleiter: Acta Mater., 2001, vol. 49, pp. 2713–22.

    Article  CAS  Google Scholar 

  4. H. Van Swygenhoven, M. Spaczer, and A. Caro: Acta Mater., 1999, vol. 47, pp. 3117–26.

    Article  Google Scholar 

  5. H. Van Swygenhoven and P.M. Derlet: Phys. Rev. B, 2001, vol. 64, p. 224105.

    Article  ADS  Google Scholar 

  6. P.M. Derlet and H. Van Swygenhoven: Scripta Mater., 2002, vol. 47, pp. 719–24.

    Article  CAS  Google Scholar 

  7. A. Hasnaoui, H. Van Swygenhoven, and P.M. Derlet: Phys. Rev. B, 2002, vol. 66, p. 184112.

    Article  ADS  Google Scholar 

  8. H. Van Swygenhoven, M. Spaczer, A. Caro, and D. Farkas: Phys. Rev. B, 1999, vol. 60, pp. 22–25.

    Article  ADS  Google Scholar 

  9. D.W. Brenner: Computer Modeling of Nanostructured Materials, 2nd ed., Carl Koch, ed., Noyes Publications, Norwich, NY, 2006.

  10. G.F. Dieter: Mechanical Metallurgy, 3rd ed., McGraw Hill, New York, NY, 1986.

    Google Scholar 

  11. H. Van Swygenhoven: Science, 2002, vol. 296, pp. 66–67.

    Article  PubMed  Google Scholar 

  12. J. Schiotz and K.W. Jacobsen: Science, 2003, vol. 301, pp. 1357–59.

    Article  CAS  PubMed  ADS  Google Scholar 

  13. V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter: Philos. Mag. Lett., 2003, vol. 83, pp. 385–93.

    Article  CAS  ADS  Google Scholar 

  14. K.S. Kumar, H. Van Swygenhoven, and S. Suresh: Acta Mater., 2003, vol. 51, pp. 5743–44.

    Article  CAS  Google Scholar 

  15. D. Wolf, V. Yamakov, S.R. Phillpot, A. Mukherjee, and H. Gleiter: Acta Mater., 2005, vol. 53, pp. 1–40.

    Article  CAS  Google Scholar 

  16. D. Jia, K.T. Ramesh, E. Ma, L. Lu, and K. Lu : Scripta Mater., 2001, vol. 45, pp. 613–20.

    Article  CAS  Google Scholar 

  17. E.M. Bringa, A. Caro, Y. Wang, M. Victoria, J.M. McNaney, B.A. Remington, R.F. Smith, B.R. Torralva, and H. Van Swygenhoven: Science, 2005, vol. 309, pp. 1838–41.

    Article  CAS  PubMed  ADS  Google Scholar 

  18. R.W. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, 4th ed., Wiley & Sons, New York, NY, 1996.

    Google Scholar 

  19. T.H. Courtney: Mechanical Behavior of Materials, McGraw-Hill, New York, NY, 1990.

    Google Scholar 

  20. N.Q. Vo, R.S. Averback, P. Bellon, S. Odunuga, and A. Caro: Phys. Rev. B, 2008, vol. 77, p. 134108.

    Article  ADS  Google Scholar 

  21. A.C. Lund, T.G. Nieh, and C.A. Schuh: Phys. Rev. B, 2004, vol. 69, p. 012101.

    Article  ADS  Google Scholar 

  22. A.C. Lund and C.A. Schuh: Acta Mater., 2003, vol. 51, pp. 5399–5411.

    Article  CAS  Google Scholar 

  23. C.A. Schuh and A.C. Lund: Nat. Mater., 2003, vol. 2, pp. 449–52.

    Article  CAS  PubMed  ADS  Google Scholar 

  24. A.C. Lund and C.A. Schuh: Acta Mater., 2005, vol. 53, pp. 3193–3205.

    Article  CAS  Google Scholar 

  25. E. Moshe, S. Eliezer, E. Dekel, A. Ludmirsky, Z. Henis, M. Werdiger, I.B. Goldberg, N. Eliaz, and D. Eliezer: J. Appl. Phys., 1998, vol. 83, pp. 4004–11.

    Article  CAS  ADS  Google Scholar 

  26. G.I. Kanel, S.V. Razorenov, A.V. Utkin, V.E. Fortov, K. Baumung, H.U. Karow, D. Rusch, and V. Licht: J. Appl. Phys., 1993, vol. 74, pp. 7162–65.

    Article  CAS  ADS  Google Scholar 

  27. S. Eliezer, I. Gilath, and T. Bar-Noy: J. Appl. Phys., 1990, vol. 67, pp. 715–24.

    Article  CAS  ADS  Google Scholar 

  28. H. Tamura, T. Kohama, K. Kondo, and M. Yoshida: J. Appl. Phys., 2001, vol. 89, pp. 3520–22.

    Article  CAS  ADS  Google Scholar 

  29. E. Moshe, S. Eliezer, E. Dekel, Z. Henis, A. Ludmirsky, I.B. Goldberg, and D. Eliezer: J. Appl. Phys., 1999, vol. 86, pp. 4242–48.

    Article  CAS  ADS  Google Scholar 

  30. P.M. Derlet and H. Van Swygenhoven: Phys. Rev. B, 2003, vol. 67, p. 014202.

    Article  ADS  Google Scholar 

  31. S. Kumar, S.K. Kurtz, J.R. Banavar, and M.G. Sharma: J. Stat. Phys., 1992, vol. 67, pp. 523–51.

    Article  MATH  ADS  Google Scholar 

  32. C.L. Kelchner, S.J. Plimpton, and J.C. Hamilton: Phys. Rev. B., 1998, vol. 58, pp. 11085–88.

    Article  CAS  ADS  Google Scholar 

  33. A.F. Voter: in Intermetallic Compounds: Principles and Practice, J.H. Westbrook and R.L. Fleischer, eds., Wiley & Sons, New York, NY, 1994, vol. 1, p. 77.

  34. J.A. Zimmerman, H. Gao, and F.F. Abraham: Modell. Simul. Mater. Sci. Eng., 2000, vol. 8, pp. 103–15.

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgment

The research is supported by the Army Research Office (ARO) through the National Research Council Research Associateship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.M. Dongare.

Additional information

Manuscript submitted April 1, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dongare, A., Rajendran, A., Lamattina, B. et al. Atomic-Scale Study of Plastic-Yield Criterion in Nanocrystalline Cu at High Strain Rates. Metall Mater Trans A 41, 523–531 (2010). https://doi.org/10.1007/s11661-009-0113-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-0113-x

Keywords

Navigation