Skip to main content
Log in

In-Situ High-Energy X-Ray Diffuse-Scattering Study of the Phase Transition of Ni2MnGa Single Crystal under High Magnetic Field

  • Symposium: Neutron and X-Ray Studies of Advanced Materials
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The defects-related microstructural features connected to the premartensitic and martensitic transition of a Ni2MnGa single crystal under a high magnetic field of 50 KOe applied along the \( \left[ {1\bar{1}0} \right] \) crystallographic direction of the Heusler phase were studied by the in-situ high-energy X-ray diffuse-scattering experiments on the high energy synchrotron beam line 11-ID-C of APS and thermomagnetization measurements. Our experiments show that a magnetic field of 50 KOe applied along the \( \left[ {1\bar{1}0} \right] \) direction of the parent Heusler phase can promote the premartensitic transition of Ni2MnGa single crystal, but puts off martensite transition and the reverse transition. The premartensitic transition temperature (T PM ) increases from 233 to 250 K (−40 to −23 °C). The martensite transition start temperature (M s ) decreases from 175 to 172 K (−98 to −101 °C), while the reverse transition start temperature (A s ) increases from 186 to 189 K (−87 to −84 °C). The high magnetic field leads to a rapid rearrangement of martensite variants below the martensite transition finish temperature (M f ). The real transition process of Ni2MnGa single crystal under the high magnetic field was in-situ traced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Sozinov, A.A. Likhachev, N. Lanska, and K. Ullakko: Appl. Phys. Lett., 2002, vol. 80, pp. 1746–48.

    Article  CAS  ADS  Google Scholar 

  2. S.J. Murray, M.A. Marioni, A.M. Kukla, J. Robinson, R.C. O’Handley, and S.M. Allen: J. Appl. Phys., 2000, vol. 87, pp. 5774–76.

    Article  CAS  ADS  Google Scholar 

  3. A.N. Vasil’ev, V.D. Buchelnikov, T. Takagi, V.V. Khovailo, and E.I. Estrin: Physics-Uspekhi, 2003, vol. 46, pp. 559–88.

    Article  ADS  Google Scholar 

  4. I. Takeuchi, O.O. Famodu, J.C. Read, M.A. Aronova, K.-S. Chang, C. Craciunescu, S.E. Lofland, M. Wuttig, F.C. Wellstood, L. Knauss, and A. Orozco: Nat. Mater., 2003, vol. 2, pp. 180–84.

    Article  CAS  PubMed  ADS  Google Scholar 

  5. V.V. Khovailo, V. Novosad, T. Takagi, D.A. Filippov, and R.Z. Levitin, and A.N. Vasil’ev: Phys. Rev. B, 2004, vol. 70, pp. 174413–174416.

    Article  ADS  Google Scholar 

  6. Y.J. Tang, V.C. Solomon, D.J. Smith, H. Harper, and A.E. Berkowitz: J. Appl. Phys., 2005, vol. 97, pp. 10M309-1–10M309-3.

    Google Scholar 

  7. C. Segui, E. Cesari, J. Font, J. Muntasell, and V.A. Chernenko: Scripta Mater., 2005, vol. 53, pp. 315–18.

    CAS  Google Scholar 

  8. G. Mogylnyy, I. Glavatskyy, N. Glavatska, O. Soderberg, Y. Ge, and V.K. Lindroos: Scripta Mater., 2003, vol. 48, pp. 1427–32.

    Article  CAS  Google Scholar 

  9. D.Y. Cong, Y.D. Zhang, Y.D. Wang, C. Esling, X. Zhao, and L. Zuo: J. Appl. Cryst., 2006, vol. 39, pp. 723–27.

    Article  CAS  Google Scholar 

  10. D.Y. Cong, Y.D. Wang, P. Zetterstrom, R.L. Peng, R. Delaplane, X. Zhao, and L. Zuo: Mater. Sci. Technol., 2005, vol. 21, pp. 1412–16.

    Article  CAS  Google Scholar 

  11. D.Y. Cong, P. Zetterstrom, Y.D. Wang, R. Delaplane, R.L. Peng, X. Zhao, and L. Zuo: Appl. Phys. Lett., 2005, vol. 87, pp. 111906–111908.

    Article  ADS  Google Scholar 

  12. Y.D. Wang, D.Y. Cong, R.L. Peng, P. Zetterstrom, Z.F. Zhang, X. Zhao, and L. Zuo: J. Mater. Res., 2006, vol. 21, pp. 691–97.

    Article  CAS  ADS  Google Scholar 

  13. G. Wang, Y.D. Wang, Y. Ren, Y.D. Liu, and P.K. Liaw: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 3184–90.

    Article  CAS  ADS  Google Scholar 

  14. J.H. Kim, T. Fukuda, and T. Kakeshita: Mater. Sci. Eng. A, 2006, vols. 438–440, pp. 952–56.

    Google Scholar 

  15. Y. Liang, H. Kato, M. Taya, and T. Mori: Scripta Mater., 2001, vol. 45, pp. 569–74.

    Article  CAS  Google Scholar 

  16. M. Ohtsuka, H. Katsuyama, M. Matsumoto, T. Takagi, and K. Itagaki: Mater. Sci. Eng. A, 2008, vols. 481–482, pp. 275–78.

    Google Scholar 

  17. L. Margulies, G. Winther, and H.F. Poulsen: Science, 2001, vol. 291, pp. 2392–96.

    Article  CAS  PubMed  ADS  Google Scholar 

  18. S.E. Offerman, N.H. Van Dijk, J. Sietsma, S. Grigull, E.M. Lauridsen, and L. Margulies: Science, 2002, vol. 298, pp. 1003–06.

    Article  CAS  PubMed  ADS  Google Scholar 

  19. S. Schmidt, S.F. Nielsen, C. Gundlach, L. Margulies, X. Huang, and D.J. Jensen: Science, 2004, vol. 305, pp. 229–31.

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Y.D. Wang, R.L. Peng, J. Almer, M. Oden, Y.D. Liu, and J.N. Deng: Adv. Mater., 2005, vol. 17, pp. 1221–26.

    Article  CAS  Google Scholar 

  21. Y.D. Wang, Y. Ren, H. Li, H. Choo, M.L. Benson, D.W. Brown, P.K. Liaw, L. Zuo, G. Wang, D.E. Brown, and E.E. Alp: Adv. Mater., 2006, vol. 18, pp. 2392–98.

    Article  CAS  Google Scholar 

  22. Y.D. Wang, Y. Ren, E.W. Huang, Z.H. Nie, G. Wang, Y.D. Liu, J.N. Deng, L. Zuo, H. Choo, P.K. Liaw, and D.E. Brown: Appl. Phys. Lett., 2007, vol. 90, pp. 101917–101920.

    Article  ADS  Google Scholar 

  23. H. Kimura and H. Komiya: J. Cryst. Growth, 1973, vol. 20, pp. 283–91.

    Article  CAS  ADS  Google Scholar 

  24. A. Sozinov, A.A. Likhachev, N. Lanska, and K. Ullakko: Appl. Phys. Lett., 2002, vol. 80, 1746–48.

    Article  CAS  ADS  Google Scholar 

  25. T. Fukuda, H. Maeda, M. Yasui, and T. Kakeshita: Scripta Mater., 2009, vol. 60, pp. 261–63.

    Article  CAS  Google Scholar 

  26. T. Kakeshita, J.H. Kim, and T. Fukuda: Mater. Sci. Eng. A, 2008, vols. 481–482, pp. 40–48.

    Google Scholar 

  27. K. Shimizu and T. Kakeshi: ISIJ Int., 1989, vol. 29, pp. 97–116.

    Article  CAS  Google Scholar 

  28. K. Ullakko, J.K. Huang, C. Kantner, R.C. O’Handley, and V.V. Kokorin: Appl. Phys. Lett., 1996, vol. 69, pp. 1966–68.

    Article  CAS  ADS  Google Scholar 

  29. R.D. James and M. Wuttig: Phil. Mag. A, 1998, vol. 77, pp. 1273–99.

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 50871027, 50725102, and 50501005). This work is also supported by the 111 Project of China (Grant No. B07015), Liaoning BaiQianWan Talents Program, and Natural Science Foundation of Liaoning, China (Grant No. 20042024). One of the authors (PKL) thanks the financial support of the National Science Foundation International Materials Institutes (IMI) Program (Grant No. DMR-0231320), Dr. C. Huber, Program Director. Use of the Advanced Photon Source was supported by the United States Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yandong Liu.

Additional information

This article is based on a presentation given in the symposium “Neutron and X-Ray Studies of Advanced Materials,” which occurred February 15–19, 2009, during the TMS Annual Meeting in San Francisco, CA, under the auspices of TMS, TMS Structural Materials Division, TMS/ASM Mechanical Behavior of Materials Committee, TMS: Advanced Characterization, Testing, and Simulation Committee, and TMS: Titanium Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, G., Wang, YD., Ren, Y. et al. In-Situ High-Energy X-Ray Diffuse-Scattering Study of the Phase Transition of Ni2MnGa Single Crystal under High Magnetic Field. Metall Mater Trans A 41, 1269–1275 (2010). https://doi.org/10.1007/s11661-009-0108-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-0108-7

Keywords

Navigation