Twin Nucleation by Slip Transfer across Grain Boundaries in Commercial Purity Titanium

  • L. Wang
  • Y. Yang
  • P. Eisenlohr
  • T.R. Bieler
  • M.A. Crimp
  • D.E. Mason


The role of strain transfer in the activation of deformation twinning at grain boundaries has been characterized in commercially pure titanium deformed in bending. Two different orientations of a textured polycrystal were deformed in bending and were analyzed using electron backscattered diffraction (EBSD) to determine the active slip and twinning systems in the surface tensile region. Prismatic slip and \( \left\{ {10\bar{1}2} \right\}\left\langle {\bar{1}011} \right\rangle \) twinning were the most widely observed deformation modes in both orientations. Nonprismatic slip systems were also activated, most likely to accommodate local strain heterogeneities. A slip-stimulated twin nucleation mechanism was identified for soft/hard grain pairs: dislocation slip in a soft-oriented grain can stimulate twin nucleation in the neighboring hard grain when the slip system is well aligned with the twinning system. This alignment was described by a slip-transfer parameter m′.[24] Twins activated by this mechanism always had the highest m′ value among the six available \( \left\{ {10\bar{1}2} \right\}\left\langle {\bar{1}011} \right\rangle \) twinning systems, while the Schmid factor, based on the global (uniaxial tensile) stress state, was a less significant indicator of twin activity. Through slip transfer, deformation twins sometimes formed despite having a very low global Schmid factor. The frequency of slip-stimulated twin nucleation depends strongly on the texture and loading direction in the material. For grain pairs having one grain with a large Schmid factor for twinning, nonparametric statistical analysis confirms that those with a larger m′ are more likely to display slip-stimulated twinning.


  1. 1.
    M.H. Yoo: Metall. Trans. A, 1981, vol. 12A, pp. 409–18.ADSGoogle Scholar
  2. 2.
    F. Bridier, P. Villechaise, and J. Mendez: Acta Mater., 2005, vol. 53, pp. 555–67.CrossRefGoogle Scholar
  3. 3.
    S. Zaefferer: Mater. Sci. Eng., A, 2003, vol. 344, pp. 20–30.CrossRefGoogle Scholar
  4. 4.
    X. Tan, H. Guo, H. Gu, C. Laird, and N.D.H. Munroe: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 513–18.CrossRefGoogle Scholar
  5. 5.
    U.F. Kocks: Metall. Trans., 1970, vol. 1, pp. 1121–43.Google Scholar
  6. 6.
    M.H. Yoo, J.R. Morris, K.M. Ho, and S.R. Agnew: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 813–22.ADSGoogle Scholar
  7. 7.
    A.A. Salem, S.R. Kalidindi, and R.D. Doherty: Acta Mater., 2003, vol. 51, pp. 4225–37.CrossRefGoogle Scholar
  8. 8.
    F.P.E. Dunne, A. Walker, and D. Rugg: Proc. R. Soc. London, Ser. A, 2007, vol. 463, pp. 1467–89.CrossRefADSGoogle Scholar
  9. 9.
    J.W. Christian and S. Mahajan: Prog. Mater. Sci., 1995, vol. 39, pp 1–157.CrossRefGoogle Scholar
  10. 10.
    N. Thompson and D.J. Millard: Philos. Mag., 1952, vol. 43, pp. 422–40.Google Scholar
  11. 11.
    B.A. Bilby and A.G. Crocker: Proc. R. Soc. London, Ser. A, 1965, vol. 288, pp. 240–55.CrossRefADSGoogle Scholar
  12. 12.
    Y.B. Chun, S.H. Yu, S.L. Semiatin, and S.K. Hwang: Mater. Sci. Eng., A, 2005, vol. 398, pp. 209–19.CrossRefGoogle Scholar
  13. 13.
    A. Serra and D.J. Bacon: Philos. Mag., 1996, vol. 73, pp. 333–43.CrossRefADSGoogle Scholar
  14. 14.
    S.G. Song and G.T. Gray III: Acta Metall. Mater., 1995, vol. 43, pp. 2339–2350.CrossRefGoogle Scholar
  15. 15.
    A. Serra, D.J. Bacon, and R.C. Pond: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 809–12.ADSGoogle Scholar
  16. 16.
    G.C. Kaschner, C.N. Tom′e, R.J. McCabe, A. Misra, S.C. Vogel, and D.W. Brown: Mater. Sci. Eng., A, 2007, vol. 463, pp. 122–27.CrossRefGoogle Scholar
  17. 17.
    A.A. Salem, S.R. Kalidindi, and S.L. Semiatin: Acta Mater., 2005, vol. 53, pp. 3495–3502.CrossRefGoogle Scholar
  18. 18.
    S. Nemat-Nasser, W.G. Guo, and J.Y. Cheng: Acta Mater., 1999, vol. 47, pp. 3705–20.CrossRefGoogle Scholar
  19. 19.
    Y. Chino, K. Kimura, M. Mabuchi: Mater. Sci. Eng., A, 2008, vol. 486, pp. 481–88.CrossRefGoogle Scholar
  20. 20.
    L. Kucherov and E.B. Tadmor: Acta Mater., 2007, vol. 55, pp. 2065–74.CrossRefGoogle Scholar
  21. 21.
    L. Capolungo and I.J. Beyerlein: Phys. Rev. B, 2008, vol. 78, art. no. 024117.Google Scholar
  22. 22.
    T.A. Mason, J.F. Bingert, G.C. Kaschner, S.I. Wight, and R.J. Larsen: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 949–54.ADSGoogle Scholar
  23. 23.
    Y. Hu and V. Randle: Scripta Mater., 2007, vol. 57, pp. 1051–54.Google Scholar
  24. 24.
    J. Luster and M.A. Morris: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 1745–56.CrossRefADSGoogle Scholar
  25. 25.
    W.A.T. Clark, R.H. Wagoner, Z.Y. Shen, T.C. Lee, I.M. Robertson, and H.K. Birnbaum: Scripta Metall. Mater., 1992, vol. 26, pp. 203–06.CrossRefGoogle Scholar
  26. 26.
    B.A. Simkin, B.C. Ng, T.R. Bieler, M.A. Crimp, and D.E. Mason: Intermetallics, 2003, vol. 11, pp. 215–23.CrossRefGoogle Scholar
  27. 27.
    D.L. Davidson, R.G. Tryon, M. Oja, R. Matthews, and K.S. Ravi Chandran: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 2214–25.CrossRefADSGoogle Scholar
  28. 28.
    R.G. Miller: Beyond ANOVA: Basics of Applied Statistics, Texts in Statistical Science, Chapman and Hall/CRC, Boca Raton, FL, 1998, pp. 41–64.Google Scholar
  29. 29.
    H.W. Lilliefors: J. Am. Statistical Assoc., 1967, vol. 62 (318), pp. 399–402.CrossRefGoogle Scholar
  30. 30.
    J.E. Freund: Mathematical Statistics with Applications, 7th ed., Prentice Hall, Upper Saddle River, NJ, 2004, pp. 529–86.Google Scholar
  31. 31.
    E.S. Keeping: Introduction to Statistical Inference, D. Von Nostrand Company, Princeton, NJ, 1962, p. 432.Google Scholar
  32. 32.
    D. Kumar, T.R. Bieler, D.E. Mason, M.A. Crimp, F. Roters, and D. Raabe: J. Eng. Mater. Technol., 2008, vol. 130, art. no. 021012.Google Scholar
  33. 33.
    A. Fallahi, D.E. Mason, D. Kumar, T.R. Bieler, and M.A. Crimp: Mater. Sci. Eng., A, 2006, vol. 432, pp. 281–91.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2009

Authors and Affiliations

  • L. Wang
    • 1
  • Y. Yang
    • 1
  • P. Eisenlohr
    • 2
  • T.R. Bieler
    • 1
  • M.A. Crimp
    • 1
  • D.E. Mason
    • 3
  1. 1.Chemical Engineering and Materials Science DepartmentMichigan State UniversityEast LansingUSA
  2. 2.Max-Planck-Institut für EisenforschungDüsseldorfGermany
  3. 3.Mathematics and Computer Science DepartmentAlbion CollegeAlbionUSA

Personalised recommendations