Skip to main content
Log in

Recovery and Precipitate Analysis of 9 Pct Cr-1 Pct MoVNb Steel during Creep

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of tempering temperature and creep exposure on the microstructure of a modified 9Cr steel was investigated. Creep-interrupted specimens, including the grip portion, were investigated precisely using mainly X-ray and inductively coupled plasma (ICP) spectroscopy. After saturation of precipitation due to creep exposure, the amount of extracted residue decreased once and then increased within a short period (dip). Chemical analysis showed that during the dip, the precipitates temporarily dissolved into the matrix and precipitated again. The size of the Cr23C6 increased gradually during creep, but the growth rate was relatively small, as compared to the Ostwald ripening. The size of the VN particles in the specimens tempered at 800 °C in the early stage of creep was very fine, approximately 20 nm, and tended to decrease further with the progress of creep. The size variations of the precipitates and the dip were explained from the annihilation or migration of precipitation sites, i.e., dislocations and boundaries, during creep. Transient creep for the specimens tempered at 500 °C was controlled by a reduction of the mobile dislocation density. On the other hand, transient creep for 800 °C was due to precipitation hardening of fine VN particles with the progress of creep, which was supported by the increase in both the lattice strain and the activation energy with creep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. V.K. Sikka, C.T. Ward, and K.C. Thomas: Ferritic Steels for High-Temperature Applications, ASM INTERNATIONAL Materials Park, OH, 1983, pp. 65–84.

    Google Scholar 

  2. F. Masuyama: ISIJ Int., 2001, vol. 41, pp. 612–25.

    Article  CAS  Google Scholar 

  3. K. Suzuki, S. Kumai, Y. Toda, H. Kushima, and K. Kimura: ISIJ Int., 2003, vol. 43, pp. 1089–94.

    Article  CAS  Google Scholar 

  4. NIMS Creep Data Sheet No. 43, H. Irie, ed., National Institute for Materials Science, Tokyo, 1996, pp. 1–26.

  5. A. Iseda, H. Teranisi, and F. Masuyama: Tetsu-to-Hagané, 1990, vol. 76, pp. 1076–83.

    CAS  Google Scholar 

  6. Y.S. Lee and J. Yu: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2331–39.

    Article  CAS  Google Scholar 

  7. H. Kushima, K. Kimura, F. Abe, K. Yagi, H. Irie, and K. Maruyama: Tetsu-to-Hagané, 1999, vol. 85, pp. 848–55.

    CAS  Google Scholar 

  8. H. Kushima, K. Kimura, and F. Abe: Tetsu-to-Hagané, 1999, vol. 85, pp. 841–47.

    CAS  Google Scholar 

  9. K. Suzuki, S. Kumai, H. Kushima, and K. Kimura, and F. Abe: Tetsu-to-Hagané, 2003, vol. 89, pp. 691–98.

    CAS  Google Scholar 

  10. K. Sawada, H. Kushima, and K. Kimura: ISIJ Int., 2006, vol. 46, pp. 769–75.

    Article  CAS  Google Scholar 

  11. F. Abe, S. Nakazawa, H. Araki, and T. Node: Metall. Trans. A, 1992, vol. 23A, pp. 469–77.

    CAS  ADS  Google Scholar 

  12. K. Spiradek, R. Bauer, and G. Zieler: Materials for Advanced Power Engineering, Part I, Kluwer Academic Publishers, Morwell, MA, 1994, pp. 251–62.

    Google Scholar 

  13. K. Sawada, K. Maruyama, R. Komine, and Y. Nagae: Tetsu-to-Hagané, 1997, vol. 83, pp. 466–71.

    CAS  Google Scholar 

  14. K. Sawada, M. Takeda, K. Maruyama, R. Komine, and Y. Nagae: Tetsu-to-Hagané, 1998, vol. 84, pp. 580–85.

    CAS  Google Scholar 

  15. H. Kushima, K. Kimura, F. Abe, K. Yagi, H. Irie, and K. Maruyama: Tetsu-to-Hagané, 2000, vol. 86, pp. 131–37.

    Google Scholar 

  16. Y. Kadoya and E. Shimizu: Tetsu-to-Hagané, 2000, vol. 86, pp. 189–95.

    CAS  Google Scholar 

  17. T. Endo, F. Masuyama, and K. Park: Tetsu-to-Hagané, 2002, vol. 88, pp. 526–33.

    CAS  Google Scholar 

  18. Y. Kadoya, B.F. Dyson, and M. McLean: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2549–57.

    Article  CAS  Google Scholar 

  19. L. Lundin, M. Norell, H.-O. Andrén, and L. Nyborg: Scand. J. Metall., 1997, vol. 26, pp. 27–40.

    CAS  Google Scholar 

  20. K. Suzuki, S. Kumai, H. Kushima, K. Kimura, and F. Abe: Tetsu-to-Hagané, 2000, vol. 86, pp. 550–57.

    CAS  Google Scholar 

  21. K. Yamada, M. Igarashi, S. Muneki, and F. Abe: ISIJ Int., 2001, vol. 41, pp. S116–S120.

    Article  CAS  Google Scholar 

  22. K. Sawada, K. Kubo, and F. Abe: Mater. Sci. Technol., 2003, vol. 19, pp. 732–38.

    Article  CAS  Google Scholar 

  23. M. Taneike, K. Sawada, and F. Abe: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1255–62.

    Article  CAS  Google Scholar 

  24. K. Sawada, M. Taneike, K. Kimura, and F. Abe: ISIJ Int., 2004, vol. 44, pp. 1243–49.

    Article  CAS  Google Scholar 

  25. M. Taneike, F. Abe, and K. Suzuki: Nature, 2003, vol. 424, pp. 294–26.

    Article  CAS  PubMed  ADS  Google Scholar 

  26. M. Tamura, Y. Haruguchi, M. Yamashita, Y. Nagaoka, K. Ohinata, K. Onishi, E. Itoh, H. Ito, K. Shinozuka, and H. Esaka: ISIJ Int., 2006, vol. 46, pp. 1693–1702.

    Article  CAS  Google Scholar 

  27. M. Tamura, H. Kusuyama, K. Shinozuka, and H. Esaka: ISIJ Int., 2007, vol. 47, pp. 317–26.

    Article  CAS  Google Scholar 

  28. T. Azuma, K. Miki, Y. Tanaka, T. Ishiguro: Tetsu-to-Hagané, 2002, vol. 88, pp. 678–85.

    CAS  Google Scholar 

  29. R. Ishii, Y. Tsuda, K. Fujiyama, K. Kimura, and K. Saito: Tetsu-to-Hagané, 2003, vol. 89, pp. 699–704.

    CAS  Google Scholar 

  30. O.D. Sherby and P.M. Burke: Mechanical Behavior of Crystalline Solids at Elevated Temperature, Pergamon Press, Oxford, United Kingdom, 1968, pp. 325–96.

    Google Scholar 

  31. S. Takeuchi and A.S. Argon: J. Mater. Sci., 1976, vol. 11, pp. 1542–66.

    Article  CAS  ADS  Google Scholar 

  32. B.F. Dyson: Creep Behavior of Advanced Materials for the 21st Century, TMS, Warrendale, PA, 1999, pp. 3–12.

    Google Scholar 

  33. W. Blum: Materials Science & Technology, VCH, Weinheim, Germany, 1993, pp. 360–405.

    Google Scholar 

  34. B. Reppich: Materials Science & Technology, VCH, Weinheim, Germany, 1993, pp. 312–57.

    Google Scholar 

  35. M. Tamura, H. Esaka, and K. Shinozuka: ISIJ Int., 1999, vol. 39, pp. 380–87.

    Article  CAS  Google Scholar 

  36. M. Tamura, H. Esaka, and K. Shinozuka: Mater. Trans. JIM, 2000, vol. 41, pp. 272–78.

    CAS  Google Scholar 

  37. M. Tamura, M.M. Nowell, K. Shinozuka, and H. Esaka: Mater. Trans., 2006, vol. 47, pp. 1332–40.

    Article  CAS  Google Scholar 

  38. M. Tamura, H. Sakasegawa, Y. Kato, A. Kohyama, H. Esaka, and K. Shinozuka: ISIJ Int., 2002, vol. 42, pp. 1444–51.

    Article  CAS  Google Scholar 

  39. W.H. Hall: Proc. Phys. Soc., 1949, vol. 62, pp. 741–43.

    ADS  Google Scholar 

  40. F.W. Jones: Proc. R. Soc., 1938, vol. 116A, pp. 16–43.

    ADS  Google Scholar 

  41. M. Tamura, H. Esaka, and K. Shinozula: Mater. Trans., 2003, vol. 44, pp. 118–26.

    Article  CAS  Google Scholar 

  42. P. Feltham and J.D. Meakin: Acta Metall., 1959, vol. 7, pp. 614–27.

    Article  CAS  Google Scholar 

  43. F.C. Monkman and N.J. Grant: Proc. ASTM, 1956, vol. 56, pp. 593–620.

    Google Scholar 

  44. V.K. Sikka, M.G. Cowgill, and B.W. Roberts: Proc. Topical Conf. Ferritic Alloys for Use in Nuclear Energy Technology, Snowbird, UT, American Nuclear Society, La Grange Park, IL, 1983, pp. 713–23.

  45. F.R. Larson and J. Miller: Trans ASME, 1952, vol. 74, pp. 765–75.

    Google Scholar 

  46. F. Masuyama: Int. J. Press. Vessels Piping, 2007, vol. 84, pp. 53–61.

    Article  CAS  Google Scholar 

  47. Y. Tsuchida, K. Okamoto, and Y. Tokunaga: Tetsu-to-Hagané, 1995, vol. 81, pp. 571–76.

    CAS  Google Scholar 

  48. T. Maki, K. Tsuzaki, and I. Tamura: Trans. ISIJ, 1980, vol. 20, pp. 207–14.

    CAS  Google Scholar 

  49. T. Hasegawa, Y.R. Abe, Y. Tomita, N. Maruyama, and M. Sugiyama: ISIJ Int., 2001, vol. 41, pp. 922–29.

    Article  CAS  Google Scholar 

  50. H.K.D.H. Bhadeshia: ISIJ Int., 2001, vol. 41, pp. 926–40.

    Article  Google Scholar 

  51. R. Ishii, Y. Tsuda, M. Yamada, and K. Kimura: Tetsu-to-Hagané, 2002, vol. 88, pp. 36–43.

    CAS  Google Scholar 

  52. B. Sundman, B. Jansson, and J.-O. Andersson: CALPHAD, 1985, vol. 9, pp. 153–90.

    Article  CAS  Google Scholar 

  53. R.L. Klueh: Elevated-Temperature Ferritic and Martensitic Steels and Their Applications to Future Reactors, 2004, pp. 10–33, http://www.ornl.gov

  54. P.J. Ennis: Parsons 2000 Advanced Materials for 21st Century Turbines and Power Plant, The Institute of Materials, London, 2000, pp. 498–507.

    Google Scholar 

  55. E. Cerri, E. Evangelista, S. Spigarelli, and P. Bianchi: Mater. Sci. Eng., 1998, vol. A245, pp. 285–92.

    CAS  Google Scholar 

  56. M. Tamura, M. Nakamura, K. Shinozuka, and H. Esaka: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1060–76.

    Article  CAS  ADS  Google Scholar 

  57. M. Tamura, T. Iida, H. Esaka, and K. Shinozuka: ISIJ Int., 2003, vol. 43, pp. 1807–13.

    Article  CAS  Google Scholar 

  58. H. Kubota, I. Kozasu, H. Kido, and T. Shimizu: Tetsu-to-Hagané, 1968, vol. 54, pp. 954–66.

    CAS  Google Scholar 

  59. I.M. Lifshitz and V.V. Slyozov: J. Phys. Chem. Solids, 1961, vol. 19, pp. 35–50.

    Article  ADS  Google Scholar 

  60. C. Wagner: Z. Electrochem., 1961, vol. 65, pp. 581–91.

    CAS  Google Scholar 

  61. H. Kreye: Z. Metallkd., 1970, vol. 61, pp. 108–12.

    CAS  Google Scholar 

  62. N. Fujita and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2001, vol. 17, pp. 403–08.

    Article  CAS  Google Scholar 

  63. K. Iwanaga, T. Tsuchiyama, and S. Takagi: Tetsu-to-Hagané, 1998, vol. 84, pp. 896–901.

    Google Scholar 

  64. Y. Kadoya and E. Shimizu: Tetsu-to-Hagané, 2000, vol. 86, pp. 189–95.

    CAS  Google Scholar 

  65. Z. Kubon, V. Foldyna, and V. Vodarek: Microstructural Stability of Creep Resistant Alloys for High Temperature Plant Application, Institute of Materials, London, 1998, pp. 257–70.

    Google Scholar 

  66. K. Miyata, Y. Sawaragi, H. Okada, F. Masuyama, T. Okayama, and N. Komai: ISIJ Int., 2000, vol. 40, pp. 1156–63.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tamura.

Additional information

Manuscript submitted April 18, 2009.

M. Tamura is retired

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kabadwal, A., Tamura, M., Shinozuka, K. et al. Recovery and Precipitate Analysis of 9 Pct Cr-1 Pct MoVNb Steel during Creep. Metall Mater Trans A 41, 364–379 (2010). https://doi.org/10.1007/s11661-009-0094-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-0094-9

Keywords

Navigation