Site Selection and Pseudo-Clustering Behaviors of Alloying Elements in Aluminum-Lean γ-TiAl Intermetallics

  • Muratahan Aykol
  • Amdulla O. Mekhrabov
  • M. Vedat Akdeniz


Site selection and pseudo-clustering behaviors of the various M alloying elements in Al-lean Ti50Al50–X M X (X = 1, 2, 3, 4, and 5 at. pct) intermetallics have been investigated by means of the ordering energy-dependent and long-range-order forced fast Monte Carlo simulation method. The ordering energies have been calculated via pseudopotential approximation in the electronic theory of alloys up to the third coordination sphere (CS) taking the anisotropic nature of tetragonal L10-type structure of γ-TiAl into account. It was shown that the site occupation characteristics of the M alloying element atoms in γ-TiAl intermetallics are governed by the relative magnitude of partial ordering energies between Ti-M and Al-M atomic pairs. However, the sign of partial ordering energies of these atomic pairs at the first CS becomes important in determining the clustering behavior and controls the dissolution modes of alloying element atoms in the γ-TiAl matrix. The pseudo-clustering behavior of alloying elements reveals three dissolution modes, namely, random dissolution (mode I), planar clustering in two dimensions (mode II), and three-dimensional (3-D) clustering (mode III) of the M occupant atoms.


Monte Carlo Monte Carlo Step Site Occupation Alloy Atom Sublattice Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported through The Scientific and Technological Research Council of Turkey, TUBITAK, Project No. MAG-COST-535 (104M323), which the authors gratefully acknowledge.


  1. 1.
    E.S. Bumps and H.D. Kessler: J. Met. Trans. AIME, 1952, vol. 194, pp. 609–14.Google Scholar
  2. 2.
    J.B. McAndrew and H.D. Kessler: J. Met. Trans. AIME, 1956, vol. 8, pp. 1348–53.Google Scholar
  3. 3.
    Y.W. Kim: JOM, 1994, vol. 46 (7), pp. 30–39.Google Scholar
  4. 4.
    Y.W. Kim: JOM, 1995, vol. 47 (7), pp. 39–41.Google Scholar
  5. 5.
    D.M. Dimiduk: Mater. Sci. Eng. A, 1999, vol. 263, pp. 281–88.CrossRefGoogle Scholar
  6. 6.
    E.A. Loria: Intermetallics, 2000, vol. 8, pp. 1339–45.CrossRefGoogle Scholar
  7. 7.
    Y.L. Hao, R. Yang, Y.Y. Cui, and D. Li: Acta Mater., 2000, vol. 48, pp. 1313–24.CrossRefGoogle Scholar
  8. 8.
    R. Yang and Y.L. Hao: Scripta Mater., 1999, vol. 41, pp. 341–46.CrossRefGoogle Scholar
  9. 9.
    Y.W. Kim and D.M. Dimiduk: JOM, 1991, vol. 43, pp. 40–47.Google Scholar
  10. 10.
    B.J. Inkson, C.B. Boothroyd, and C.J. Humphreys: Acta Metall. Mater., 1993, vol. 41, pp. 2867–76.CrossRefGoogle Scholar
  11. 11.
    D.G. Konitzer, I.P. Jones, and H.L. Fraser: Scripta Metall., 1986, vol. 20, pp. 265–68.CrossRefGoogle Scholar
  12. 12.
    S. Kim, D. Nguyen-Manh, G.D.W. Smith, and D.G. Pettifor: Phil. Mag. A, 2000, vol. 80, pp. 2489–2508.CrossRefADSGoogle Scholar
  13. 13.
    V.S. Babu, A.S. Pavlovic, and M.S. Seehra: J. Mater. Res., 1993, vol. 8, pp. 989–94.CrossRefADSGoogle Scholar
  14. 14.
    X.F. Chen, R.D. Reviere, B.F. Oliver, and C.R. Brooks: Scripta Metall. Mater., 1992, vol. 27, pp. 45–49.CrossRefGoogle Scholar
  15. 15.
    H.L. Dang, C.Y. Wang, and T. Yu: J. Appl. Phys., 2007, vol. 101, pp. 083702–083709.CrossRefADSGoogle Scholar
  16. 16.
    Y.L. Hao, D.S. Xu, Y.Y. Cui, R. Yang, and D. Li: Acta Mater., 1999, vol. 47, pp. 1129–39.CrossRefGoogle Scholar
  17. 17.
    Y.L. Hao, R. Yang, Y.Y. Cui, and D. Li: Intermetallics, 2000, vol. 8, pp. 633–36.CrossRefGoogle Scholar
  18. 18.
    Y. Jinlong, X. Chuanyun, X. Shangda, and W. Kelin: Phys. Rev. B, 1992, vol. 46, p. 13709.CrossRefADSGoogle Scholar
  19. 19.
    R.D. Reviere, X.F. Chen, B.F. Oliver, C.R. Brooks, and J.R. Dunlap: Mater. Sci. Eng. A, 1993, vol. 172, pp. 95–100.CrossRefGoogle Scholar
  20. 20.
    Y. Song, Z.X. Guo, and R. Yang: J. Light Met., 2002, vol. 2, pp. 115–23.CrossRefGoogle Scholar
  21. 21.
    Y. Song, R. Yang, D. Li, Z.Q. Hu, and Z.X. Guo: Intermetallics, 2000, vol. 8, pp. 563–68.CrossRefGoogle Scholar
  22. 22.
    J. Wesemann, W. Falecki, and G. Frommeyer: Phys. Status Solidi A, 2000, vol. 177, pp. 319–29.CrossRefADSGoogle Scholar
  23. 23.
    W. Wolf, R. Podloucky, P. Rogl, and H. Erschbaumer: Intermetallics, 1996, vol. 4, pp. 201–09.CrossRefGoogle Scholar
  24. 24.
    C. Woodward and S. Kajihara: Acta Mater., 1999, vol. 47, pp. 3793–98.CrossRefGoogle Scholar
  25. 25.
    C.J. Rossouw, C.T. Forwood, M.A. Gibson, and P.R. Miller: Phil. Mag. A, 1996, vol. 74, pp. 77–102.CrossRefADSGoogle Scholar
  26. 26.
    C.J. Rossouw, C.T. Forwood, M.A. Gibson, and P.R. Miller: Phil. Mag. A, 1996, vol. 74, pp. 57–76.CrossRefADSGoogle Scholar
  27. 27.
    A.A. Katsnelson, A.O. Mekhrabov, and V.M. Silonov: Fiz. Metal. Metalloved., 1981, vol. 52, pp. 661–62.Google Scholar
  28. 28.
    A.O. Mekhrabov and M. Doyama: Phys. Status Solidi B, 1984, vol. 126, pp. 453–58.CrossRefGoogle Scholar
  29. 29.
    A.O. Mekhrabov, Z.M. Babaev, A.A. Katsnelson, and Z.A. Matysina: Fiz. Metal. Metalloved., 1986, vol. 61, pp. 1089–93.Google Scholar
  30. 30.
    A.O. Mekhrabov, A. Ressamoglu, and T. Ozturk: J. Alloys Compd., 1994, vol. 205, pp. 147–55.CrossRefGoogle Scholar
  31. 31.
    A.O. Mekhrabov, M.V. Akdeniz, and M.M. Arer: Acta Mater., 1997, vol. 45, pp. 1077–83.CrossRefGoogle Scholar
  32. 32.
    M.V. Akdeniz and A.O. Mekhrabov: Acta Mater., 1998, vol. 46, pp. 1185–92.CrossRefGoogle Scholar
  33. 33.
    A.O. Mekhrabov and M.V. Akdeniz: Acta Mater., 1999, vol. 47, pp. 2067–75.CrossRefGoogle Scholar
  34. 34.
    A.O. Mekhrabov and M.V. Akdeniz: Metall. Mater. Trans. A., 2003, vol. 34A, pp. 721–34.ADSGoogle Scholar
  35. 35.
    A.O. Mekhrabov and M.V. Akdeniz: Model. Simul. Mater. Sci. Eng., 2007, vol. 15, pp. 1–12.CrossRefADSGoogle Scholar
  36. 36.
    J. Hubbard: Proc. R. Soc. A, 1957, vol. 240, pp. 539–60.MATHCrossRefMathSciNetADSGoogle Scholar
  37. 37.
    A.O.E. Animalu: Phys. Rev. B, 1973, vol. 8, pp. 3542–54.CrossRefADSGoogle Scholar
  38. 38.
    W.B. Pearson: A Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon, New York, NY, 1958, pp. 144–45.Google Scholar
  39. 39.
    J.M. Cowley: J. Appl. Phys., 1950, vol. 21, pp. 24–30.CrossRefADSGoogle Scholar
  40. 40.
    B.E. Warren, B.L. Averbach, and B.W. Roberts: J. Appl. Phys., 1951, vol. 22, pp. 1493–96.CrossRefADSGoogle Scholar
  41. 41.
    U. Gahn and W. Pitsch: Acta Metall., 1989, vol. 37, pp. 2455–62.CrossRefGoogle Scholar
  42. 42.
    U. Gahn, W. Pitsch: Acta Metall. Mater., 1990, vol. 38, pp. 1863–70.CrossRefGoogle Scholar
  43. 43.
    M. Matsumoto and T. Nishimura: ACM Trans. Model. Comput. Simul., 1998, vol. 8, pp. 3–30.MATHCrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2009

Authors and Affiliations

  • Muratahan Aykol
    • 1
  • Amdulla O. Mekhrabov
    • 1
  • M. Vedat Akdeniz
    • 1
  1. 1.Novel Alloys Design and Development Laboratory (NOVALAB), Department of Metallurgical and Materials EngineeringMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations