Skip to main content
Log in

Delamination Fracture Related to Tempering in a High-Strength Low-Alloy Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The delamination or splitting of mechanical test specimens of rolled steel plate is a phenomenon that has been studied for many years. In the present study, splitting during fracture of tensile and Charpy V-notch (CVN) test specimens is examined in a high-strength low-alloy plate steel. It is shown that delamination did not occur in test specimens from plate in the as-rolled condition, but was severe in material tempered in the temperature range 500 °C to 650 °C. Minor splitting was seen after heating to 200 °C, 400 °C, and 700 °C. Samples that had been triple quenched and tempered to produce a fine equiaxed grain size also did not exhibit splitting. Microstructural and preferred orientation studies are presented and are discussed as they relate to the splitting phenomenon. It is concluded that the elongated as-rolled grains and grain boundary embrittlement resulting from precipitates (carbides and nitrides) formed during reheating were responsible for the delamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. W. Wang, Y.Y. Shan, and K. Yang: Mater. Sci. Eng., A, 2009, vol. 502, pp. 38–44.

    Article  Google Scholar 

  2. M.C. Zhao, Y.Y. Shan, F.R. Xiao, K. Yang, and Y.H. Li: Mater. Lett., 2002, vol. 57, pp. 141–45.

    Article  CAS  Google Scholar 

  3. M. Yang, Y.J. Chao, X. Li, and J. Tan: Mater. Sci. Eng., A, 2008, vol. 497, pp. 451–61.

    Article  Google Scholar 

  4. M. Yang, Y.J. Chao, X. Li, D. Immel, and J. Tan: Mater. Sci. Eng., A, 2008, vol. 497, pp. 462–70.

    Article  Google Scholar 

  5. P. Shanmugam and S.D. Pathak: Eng. Fract. Mech., 1996, vol. 53, pp. 991–1005.

    Article  Google Scholar 

  6. C. Thaulow, A.J. Paauw, A. Gunlleiksrud, and J. Troset: Eng. Fract. Mech., 1986, vol. 24, pp. 263–76.

    Article  Google Scholar 

  7. B. Faucher and B. Dogan: Metall. Trans. A, 1988, vol. 19A, pp. 505–16.

    CAS  ADS  Google Scholar 

  8. N. Tsuji, S. Okuno, Y. Koizumi, and Y. Minamino: Mater. Trans., 2004, vol. 45, pp. 2272–81.

    Article  CAS  Google Scholar 

  9. R. Song, D. Ponge, and D. Raabe: Acta Mater., 2005, vol. 53, pp. 4881–92.

    Article  CAS  Google Scholar 

  10. R. Song, D. Ponge, D. Raabe, J.G. Speer, and D.K. Matlock: Mater. Sci. Eng., A, 2006, vol. 441, pp. 1–17.

    Article  Google Scholar 

  11. K. Wallin: Int. J. Pressure Vessels Pip., 2001, vol. 78, pp. 463–70.

    Article  Google Scholar 

  12. M.C. Silva, E. Hippert, Jr., and C. Ruggieri: Proc. ASME Pressure Vessels and Piping Conf., ASME, Denver, CO, 2005, pp. 87–94.

  13. W. Guo, H. Dong, M. Lu, and X. Zhao: Int. J. Pressure Vessels Pip., 2002, vol. 79, pp. 403–12.

    Article  CAS  Google Scholar 

  14. X. Qingren, F. Yaorong, H. Chunyong, and L. Weiwei: Mater. Mech. Eng., 2005, vol. 29, pp. 21–25.

    Google Scholar 

  15. A. Ray, S.K. Paul, and S. Jha: J. Mater. Eng. Perform., 1995, vol. 4, pp. 679–88.

    Article  CAS  Google Scholar 

  16. B.L. Bramfitt and A.R. Marder: Metall. Trans. A, 1977, vol. 8A, pp. 1263–73.

    CAS  ADS  Google Scholar 

  17. T. Otárola, S. Hollner, B. Bonnefois, M. Anglada, L. Coudreuse, and A. Mateo: Eng. Fail. Anal., 2005, vol. 12, pp. 930–41.

    Article  Google Scholar 

  18. J.I. Verdeja, J. Asensio, and J.A. Pero-Sanz: Mater. Charact., 2003, vol. 50, pp. 81–86.

    Article  CAS  Google Scholar 

  19. K. Roessler: Neue Huette, 1989, vol. 34, pp. 254–57.

    CAS  Google Scholar 

  20. Y. Kimura, T. Inoue, F. Yin, O. Sitdikov, and K. Tsuzaki: Scripta Mater., 2007, vol. 57, pp. 465–68.

    Article  CAS  Google Scholar 

  21. X. Zhao, T.F. Jing, Y.W. Gao, G.Y. Qiao, J.F. Zhou, and W. Wang: Mater. Sci. Eng., A, 2005, vol. 397, pp. 117–21.

    Article  Google Scholar 

  22. M. Pozuelo, F. Carreño, and O.A. Ruano: Compos. Sci. Technol., 2006, vol. 66, pp. 2671–76.

    Article  CAS  Google Scholar 

  23. R. Schofield, G. Rowntree, N.V. Sarma, and R.T. Weiner: Met. Technol., 1974, vol. 1, pp. 325–31.

    Google Scholar 

  24. C.S. da Costa viana and M.M. de Souza: Proc. 7th Int. Conf. Textures of Materials, Netherlands Society for Materials Science, Zwijndrecht, Netherlands, 1984, pp. 585–88.

  25. C. Grobler and G.T. van Rooyen: Can. Metall. Q, 1988, vol. 27, pp. 49–58.

    CAS  Google Scholar 

  26. T. Tanaka: Int. Met. Rev., 1981, vol. 4, pp. 185–212.

    Google Scholar 

  27. M.R. Krishnadev, S. Dionne, and J. Morrison: Mater. Charact., 1990, vol. 24, pp. 169–78.

    Article  CAS  Google Scholar 

  28. A.J. McEvely and R.H. Rush: Trans. ASM, 1962, vol. 55, pp. 654–66.

    Google Scholar 

  29. R.D. Knutsen and R. Hutchings: Mater. Sci. Technol., 1988, vol. 4, pp. 127–35.

    CAS  Google Scholar 

  30. W. Yan, L. Zhu, W. Sha, Y.-Y. Shan, and K. Yang: Mater. Sci. Eng., A, 2009, vol. 517, pp. 369–74.

    Article  Google Scholar 

  31. R.W.K. Honeycombe and H.K.D.H. Bhadeshia: Steels: Microstructure and Properties, 2nd ed., Arnold, London, 1995, p. 177.

    Google Scholar 

  32. W. Yan, Y.Y. Shan, and K. Yang: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1211–22.

    Article  CAS  ADS  Google Scholar 

  33. P.W. Bridgman: Studies in Large Plastic Flow and Fracture with Special Emphasis on the Effects of Hydrostatic Pressure, Harvard University Press, Cambridge, MA, 1964, pp. 9–86

    Google Scholar 

  34. G.E. Dieter: Mechanical Metallurgy, 3rd ed., McGraw-Hill, New York, NY, 1986, p. 289.

    Google Scholar 

  35. D.L. Shu: Metal Mechanical Property, 2nd ed., China Machine Press, Beijing, 1997, p. 19.

    Google Scholar 

Download references

Acknowledgments

The work is financially supported by the Doctoral Research Fund from Liaoning Province (People’s Republic of China) through Grant No. 20081011. Thanks are also due to Dr. William Warke for his efforts on this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Yin Shan.

Additional information

Manuscript submitted March 17, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, W., Sha, W., Zhu, L. et al. Delamination Fracture Related to Tempering in a High-Strength Low-Alloy Steel. Metall Mater Trans A 41, 159–171 (2010). https://doi.org/10.1007/s11661-009-0068-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-0068-y

Keywords

Navigation