Skip to main content
Log in

Evaluation of Friction Coefficient by Simulation in Bulk Metal Forming Process

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

With the objective of evaluating the accuracy of the upper-bound theory for calculating the average Tresca friction coefficient m in the hot forging process, we performed simulations using different values of m in each compression process to high strain levels. It was found that the upper-bound theory is not applicable at high strain levels, because the contact surface of the cylindrical sample is composed of an originally flat end surface and the annular portion formed by the contact of the lateral surface with the anvil surface. The relation among \( P = {\frac{{R_{m} H}}{{R_{t} H_{0} }}}, \) true strain, and m could be expressed by \( \left( {a^{\prime} + a^{\prime\prime}\varepsilon + a^{\prime\prime\prime}\varepsilon^{2} - P} \right) + \left( {b^{\prime} + b^{\prime\prime}\varepsilon + b^{\prime\prime\prime}\varepsilon^{2} } \right)m\,+ \left( {c^{\prime\prime}\varepsilon + c^{\prime\prime\prime}\varepsilon^{2} } \right)m^{2} = 0. \) Here, the m values obtained were in good agreement with the actual ones used in the simulations. The value of m of the arbitrary geometry cylindrical sample could also be directly read from a contour map with a relationship among nominal strain, parameter B of the corresponding standard sample, and m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. N. Frederiksen and T. Wanheim: J. Mech. Work. Technol., 1985, vol. 12, pp. 261–68.

    Article  Google Scholar 

  2. N. Bay: J. Mech. Work. Technol., 1987, vol. 14, pp. 203–23.

    Article  Google Scholar 

  3. A.T. Male and V. Depierre: J. Lubr. Technol., 1970, vol. 92, pp. 389–97.

    Google Scholar 

  4. S. Venugopal, G. Srinivasan, S. Venkadesoan, and V. Seetharaman: J. Mech. Work. Technol., 1989, vol. 19, pp. 261–66.

    Article  Google Scholar 

  5. G. Shen, V. Vedhanayagam, E. Kropp, and T. Altan: J. Mater. Process Technol., 1992, vol. 33, pp. 109–23.

    Article  Google Scholar 

  6. A. Bushhausen, K. Weinmann, J.Y. Lee, and T. Altan: J. Mater. Process. Technol., 1992, vol. 33, pp. 95–108.

    Article  Google Scholar 

  7. N. Bay, J. Hunding, K. Kuzman, and E. Pfeifer: Proc. 5th Int. Conf. on Technology of Plasticity, Columbus, OH, 1996, pp. 311–18.

  8. R. Ebrahimi and A. Najafizadeh: J. Mater. Proc. Technol., 2004, vol. 152, pp. 136–43.

    Article  CAS  Google Scholar 

  9. R. Ebrahimi, A. Najafizadeh, and R. Shateri: Proc. Steel Symp. 81, Iranian Institute for Iron and Steel, Isphahan, Iran, Mar. 2–3, 2003, pp. 230–37.

  10. Y. Li, E. Onodera, H. Matsumoto, and A. Chiba: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 982–90.

    Article  CAS  ADS  Google Scholar 

  11. Y. Li, H. Matsumoto, and A. Chiba: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1203–09.

    Article  CAS  ADS  Google Scholar 

  12. Y. Li, E. Onodera, H. Matsumoto, and A. Chiba: unpublished research, 2009.

  13. B. Avitzur and R.A. Kohser: ASME J. Eng. Ind., 1978, vol. 100, pp. 421–33.

    Google Scholar 

  14. T. Thore and E. Felder: J. Mech. Work. Technol., 1986, vol. 13, pp. 51–64.

    Article  Google Scholar 

  15. K. Phlandt and T. Oberlnder: J. Mater. Proc. Technol., 1992, vol. 34, pp. 187–94.

    Article  Google Scholar 

  16. H. Monajati, M. Jahazi, S. Yue, and A.K. Taheri: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 895–905.

    Article  CAS  Google Scholar 

  17. G.E. Dieter: Mechanical Metallurgy, 3rd ed., McGraw Hill Book Co., New York, NY, 1986, p. 539.

    Google Scholar 

  18. S.I. Oh, S.L. Semiatin, and J.J. Jonas: Metall. Trans. A, 1992, vol. 23A, pp. 963–75.

    CAS  ADS  Google Scholar 

  19. P. Daras and J.F. Thomas: Metall. Trans. A, 1981, vol. 12A, pp. 1867–76.

    ADS  Google Scholar 

  20. C.C. Chen: “Evaluation of Lubrication Systems for Isothermal Forging of Alpha-Beta Titanium Alloys,” AFML-Tr-77-181, AFWAL Materials Laboratory, WP-AFB, OH 1977.

Download references

Acknowledgments

This research was supported by a Cooperation of Innovative Technology and Advanced Research in Evolutional Area from the Ministry of Education, Culture, Sports, Science and Technology of Japan. The authors of this research thank Yamanaka Eng. Co. Ltd. (Osaka, Japan) for partly supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Chiba.

Additional information

Manuscript submitted March 4, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Onodera, E. & Chiba, A. Evaluation of Friction Coefficient by Simulation in Bulk Metal Forming Process. Metall Mater Trans A 41, 224–232 (2010). https://doi.org/10.1007/s11661-009-0066-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-0066-0

Keywords

Navigation