Skip to main content
Log in

Increased Toughness of Zirconium-Based Bulk Metallic Glasses Tested under Mixed Mode Conditions

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effects of mixed mode loading on the fracture behavior of Zr-based bulk metallic glasses (BMGs) (Vitreloy I and Vitreloy 106) were investigated. Mixed mode I/II and mixed mode I/III fracture conditions were tested using both notched and fatigue-precracked specimens. Fully amorphous samples exhibited tremendous increases in fracture energy with the application of mixed mode loading, while partially crystalline samples exhibited more modest increases. A comparison to the behavior of other material systems (e.g., polymers, ceramics, crystalline metals, and composites) illustrates the tremendous increase in fracture energy exhibited by these BMGs under mixed mode loading conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Vitreloy is the trademark of Liquidmetal Technologies, Lake Forest, CA.

  2. PHILIPS is a trademark of Philips Electronic Instruments Corp., Mahwah, NJ.

References

  1. J. Lu, G. Ravichandran, and W.L. Johnson: Acta Mater., 2003, vol. 51 (12), pp. 3429–43.

    Article  CAS  Google Scholar 

  2. P. Lowhapandu, L.A. Ludrosky, S.L. Montgomery, and J.J. Lewandowski: Intermetallics, 2000, vol. 8, pp. 487–92.

    Article  Google Scholar 

  3. J.J. Lewandowski: Mater. Trans., JIM, 2001, vol. 42 (4), pp. 633–37.

    Article  CAS  MathSciNet  Google Scholar 

  4. G. Wang, J. Shen, J.F. Sun, Z.P. Lu, Z.H. Stachurski, and B.D. Zhou: Intermetallics, 2005, vol. 13 (6), pp. 642–48.

    Article  CAS  Google Scholar 

  5. A.T. Alpas, L. Edwards, and C.N. Reid: Metall. Trans. A, 1989, vol. 20A, pp. 1395–1409.

    CAS  ADS  Google Scholar 

  6. C.J. Gilbert, R.O. Ritchie, and W.L. Johnson: Appl. Phys. Lett., 1997, vol. 71 (4), pp. 476–78.

    Article  CAS  ADS  Google Scholar 

  7. C.J. Gilbert, V. Schroeder, and R.O. Ritchie: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1739–53.

    Article  CAS  Google Scholar 

  8. C.J. Gilbert, J.M. Lippmann, and R.O. Ritchie: Scripta Mater., 1998, vol. 38 (4), pp. 537–42.

    Article  CAS  Google Scholar 

  9. B.C. Menzel and R.H. Dauskardt: Acta Mater., 2006, vol. 54 (4), pp. 935–43.

    Article  CAS  Google Scholar 

  10. K.M. Flores and R.H. Dauskardt: Scripta Mater., 1999, vol. 41 (9), pp. 937–43.

    Article  CAS  Google Scholar 

  11. R.D. Conner, A.J. Rosakis, W.L. Johnson, and D.M. Owen: Scripta Mater., 1997, vol. 37 (9), pp. 1373–78.

    Article  CAS  Google Scholar 

  12. P. Lowhaphandu and J.J. Lewandowski: Scripta Metall. Mater., 1998, vol. 38 (12), pp. 1811–17.

    CAS  Google Scholar 

  13. R.W. Margevicius, J. Riedle, and P. Gumbsch: Mater. Sci. Eng., 1999, vol. A270, pp. 197–209.

    CAS  Google Scholar 

  14. T.M. Maccagno and J.F. Knott: Eng. Fract. Mech., 1989, vol. 34 (1), pp. 65–86.

    Article  Google Scholar 

  15. D. Bhattacharjee and J.F. Knott: Acta Metall. Mater., 1994, vol. 42 (5), pp. 1747–54.

    Article  CAS  Google Scholar 

  16. T.M. Maccagno and J.F. Knott: Eng. Fract. Mech., 1992, vol. 41 (6), pp. 805–20.

    Article  Google Scholar 

  17. S.V. Kamat and J.P. Hirth: Acta Mater., 1996, vol. 44, pp. 201–08.

    Article  CAS  Google Scholar 

  18. O.R. Kashyap: Ph.D. Thesis, Nanyang Technological University, Singapore, 1999.

  19. K.M. Flores and R.H. Dauskardt: J. Mech. Phys. Solids, 2006, vol. 54 (11), pp. 2418–35.

    Article  MATH  CAS  ADS  Google Scholar 

  20. A.K. Thurston: MS Thesis, Case Western Reserve University, Cleveland, OH, 2004.

  21. “ASTM E 1820-01 Standard Test Method for Measurement of Fracture Toughness,” Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, 2001.

  22. W.K. Jen, H.C. Lin, and K. Hua: Fracture, 1977, vol. 4, pp. 123–33.

    Google Scholar 

  23. L.P. Pook: Eng. Fract. Mech., 1971, vol. 3, pp. 205–18.

    Article  CAS  Google Scholar 

  24. M. Manoharan and J.J. Lewandowski: J. Compos., 1991, vol. 25, pp. 831–41.

    CAS  Google Scholar 

  25. J.J. Lewandowski and P. Lowhaphandu: Philos. Mag. A, 2002, vol. 82 (17–18), pp. 3427–41.

    CAS  ADS  Google Scholar 

  26. P. Lowhaphandu, S.L. Montgomery, and J.J. Lewandowski: Scripta Mater., 1999, vol. 41 (1), pp. 19–24.

    Article  CAS  Google Scholar 

  27. P. Murah and U. Ramamurty: Acta Mater., 2005, vol. 53 (5), pp. 1467–78.

    Article  Google Scholar 

  28. X.J. Gu, S.J. Poon, G.J. Shiflet, and J.J. Lewandowski: Scripta Mater., 2009, vol. 60, pp. 1027–30.

    Article  CAS  Google Scholar 

  29. J.J. Lewandowski, M. Shazly, and A.S. Nouri: Scripta Mater., 2006, vol. 54 (3), pp. 337–41.

    Article  CAS  Google Scholar 

  30. A.A. Griffith: Philos. Trans. R. Soc., 1920, vol. 221, pp. 163–98.

    ADS  Google Scholar 

  31. J.G. Schroth, J.P. Hirth, R.G. Hoagland, and A.R. Rosenfield: Metall. Trans. A, 1987, vol. 18A, pp. 1061–72.

    CAS  Google Scholar 

  32. M. Manoharan, J.P. Hirth, and A.R. Rosenfield: Acta Metall. Mater., 1991, vol. 39, (6), pp. 1203–10.

    Article  CAS  Google Scholar 

  33. A. El Shabasy and J.J. Lewandowski: Mater. Sci. Technol., 2009, vol. 13 (4), pp. 369–78.

    Article  Google Scholar 

  34. K. Kishimoto, M. Notomi, S. Kadota, T. Shibuya, N. Kawamura, and T. Kawakami: Mixed-Mode Fracture Behavior of Silica Particulate Filled Epoxide Resin, ASTM STP 1359, ASTM, W. Conshohoken, PA, 1999, pp. 129–42.

  35. F. Erdogan and G.C. Sih: J. Basic Eng., 1963, vol. 85, pp. 519–27.

    Google Scholar 

  36. G.C. Sih: Mechanics of Fracture 1: A Special Theory of Crack Propagation, Noordhoff International Publishing, Leyden, The Netherlands, 1973.

    Google Scholar 

  37. K. Palaniswamy and W.G. Knauss: in Mechanics Today, S. Nemat-Nasser, ed., 1978, Pergamon Press, Oxford, UK, pp. 87–148.

    Google Scholar 

  38. F.A. McClintock and S.M. Kaplan: Int. J. Fract. Mech., 1966, vol. 2, pp. 614–27.

    Google Scholar 

  39. D. Bhattacharjee and J.F. Knott: Mater. Sci. Technol., 2007, vol. 23 (11), pp. 1269–77.

    Article  CAS  Google Scholar 

  40. J.B. Caris and J.J. Lewandowski: Acta Mater., 2009, in press.

  41. K.M. Flores and R.H. Dauskardt: Acta Mater., 2001, vol. 49 (13), pp. 2527–37.

    Article  CAS  Google Scholar 

  42. W.J. Wright, R. Saha, and W.D. Nix: Mater. Trans., 2001, vol. 42 (4), pp. 642–49.

    Article  CAS  Google Scholar 

  43. Z.F. Zhang, J. Eckert, and L. Schultz: Acta Mater., 2003, vol. 51 (4), pp. 1167–79.

    Article  CAS  Google Scholar 

  44. G. Sunny, F.P. Yuan, V. Prakash, and J. Lewandowski: J. Appl. Phys., 2008, vol. 104 (9), pp. 93522–29.

    Article  Google Scholar 

  45. F. Yuan, V. Prakash, and J.J. Lewandowski: SEM IX Int. Congr. on Experimental and Applied Mechanics, Society of Experimental Mechanics, Bethel, CT, 2008, paper no. 336.

Download references

Acknowledgments

The authors gratefully acknowledge the supply of initial materials from Dr. A. Peker, Amorphous Technologies International, Inc. (ATI) (Laguna Niquel, CA), and helpful interactions with Professor W.L Johnson, Keck Laboratory of Engineering Materials, California Institute of Technology (Pasadena, CA). More recent materials have been provided by Liquidmetal Technologies. Discussions with Professors A. Argon and F. Spaepan are also gratefully acknowledged. The early parts of this project were under the financial support of Airforce Office of Scientific Research—Augumentation for Science and Engineering Research Training (AFOSR-AASERT) Grant No. F49420-96-1-0228 and the Howmet Corporation (Whitehall, MI), followed by more recent support via the Defense Advanced Research Projects Agency (DARPA) Structural Amorphous Metals (SAM) program through Grant No. ONR-N00014-03-1-0205 and a subcontract with the California Institute of Technology through Grant No. ARO-DAAD19-19-01-1-1525. One author (JJL) appreciates the helpful discussions and references provided by Professor J.F. Knott (University of Birmingham, UK). Approved for public release. Distribution unlimited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Lewandowski.

Additional information

Manuscript submitted April 1, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varadarajan, R., Thurston, A.K. & Lewandowski, J.J. Increased Toughness of Zirconium-Based Bulk Metallic Glasses Tested under Mixed Mode Conditions. Metall Mater Trans A 41, 149–158 (2010). https://doi.org/10.1007/s11661-009-0059-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-0059-z

Keywords

Navigation