Skip to main content
Log in

Deterioration in Fracture Toughness of 304LN Austenitic Stainless Steel Due to Sensitization

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The aim of this report is to examine the influence of sensitization on the mechanical properties of AISI grade 304LN stainless steel with special emphasis on its fracture toughness. A series of stainless steel samples has been sensitized by holding at 1023 K for different time periods ranging from 1 to 100 hours followed by water quenching. The degree of sensitization (DOS) for each type of the varyingly heat-treated samples has been measured by an electrochemical potentiodynamic reactivation (EPR) test. The microstructures of these samples have been characterized by optical metallography, scanning electron microscopy, transmission electron microscopy (TEM), and X-ray diffraction (XRD) analyses, together with measurements of their hardness and tensile properties. The fracture toughness of the samples has been measured by the ball indentation (BI) technique and the results are validated by conducting conventional J-integral tests. It is revealed for the first time that the fracture toughness and ductility of AISI 304LN stainless steel deteriorate significantly with increased DOS, while the tensile strength (TS) values remain almost unaltered. The results have been critically discussed in terms of the depletion of solid solution strengtheners, the nature of the grain boundary precipitations, and the strain-induced martensite formation with the increasing DOS of the 304LN stainless steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. PHILIPS is a trademark of Philips Electronic Instruments Corp., Mahwah, NJ.

  2. Shimadzu is a trademark of Shimadzu Corporation, Soraku-gun, Japan.

References

  1. R. Singh, S.G. Chowdhury, B.R. Kumar, S.K. Das, P.K. De, and I. Chattoraj: Scripta Mater., 2007, vol. 57, pp. 185–88.

    Article  CAS  Google Scholar 

  2. Y. Kamada, T. Mikami, S. Takahashi, H. Kikuchi, S. Kobayashi, and K. Ara: J. Magn. Magn. Mater., 2007, vol. 310, pp. 2856–58.

    Article  CAS  ADS  Google Scholar 

  3. G.H. Aydogdu and M.K. Aydinol: Corros. Sci., 2006, vol. 48, pp. 3565–83.

    Article  CAS  Google Scholar 

  4. N. Parvathavarthini, R.K. Dayal, H.S. Khatak, V. Shankar, and V. Shanmugam: J. Nucl. Mater., 2006, vol. 355, pp. 68–82.

    Article  CAS  ADS  Google Scholar 

  5. D.N. Wasnik, V. Kain, I. Samajdar, B. Verlinden, and P.K. De: Acta Mater., 2002, vol. 50, pp. 4587–4601.

    Article  CAS  Google Scholar 

  6. V. Kain, K. Chandra, K.N. Adhe, and P.K. De: J. Nucl. Mater., 2004, vol. 334, pp. 115–32.

    Article  CAS  ADS  Google Scholar 

  7. Y. Ustinovshikov, A. Ruts, O. Bannykh, V. Blinov, and M. Kostina: Mater. Sci. Eng., A, 1999, vol. 262, pp. 82–87.

    Article  Google Scholar 

  8. P. Shankar, H. Shaikh, S. Sivakumar, S. Venugopal, D. Sundararaman, and H.S. Khatak: J. Nucl. Mater., 1999, vol. 264, pp. 29–34.

    Article  CAS  ADS  Google Scholar 

  9. P. Shankar, S. Sundararaman, and S. Ranganathan: J. Nucl. Mater., 1998, vol. 254, pp. 1–8.

    Article  CAS  ADS  Google Scholar 

  10. P. Shankar, S. Sundararaman, and S. Ranganathan: Scripta Metall. Mater., 1994, vol. 31 (5), pp. 589–93.

    Article  CAS  Google Scholar 

  11. S.S.M. Tavares and M.P. Cindra Fonseca: J. Mater. Sci., 2003, vol. 38, pp. 3527–33.

    Article  CAS  Google Scholar 

  12. “ASTM A262-02a Standard Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels,” Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, 2002, vol. 01.03, pp. 1–16.

  13. “ASTM G108-94 Standard Test Method for Electrochemical Reactivation (EPR) for Detecting Sensitization of AISI Type 304 and 304L Stainless Steels,” Annual Book of ASTM Standards, ASTM, West Conshohocken, PA, 1999, vol. 03.02, pp. 1–9.

  14. “JSA JIS G 0580 Method of Electrochemical Potentiokinetic Reactivation Ratio Measurement for Stainless Steels,” Japanese Standards Association, Tokyo, 1986, pp. 1–4.

  15. R. Beneke and R.F. Sandenbergh: Corros. Sci., 1989, vol. 29, pp. 543–55.

    Article  CAS  Google Scholar 

  16. R.S. Dutta, P.K. De, and H.S. Gadiyar: Corros. Sci., 1993, vol. 34, pp. 51–60.

    Article  CAS  Google Scholar 

  17. T.M. Devine: Corros. Sci., 1990, vol. 30, pp. 135–51.

    Article  CAS  Google Scholar 

  18. E.P. Butler and M.G. Burke: Acta Metall., 1986, vol. 34, pp. 557–70.

    Article  CAS  Google Scholar 

  19. S. Takaya, T. Suzuki, Y. Matsumoto, K. Demachi, and M. Uesaka: J. Nucl. Mater., 2004, vol. 327, pp. 19–26.

    Article  CAS  ADS  Google Scholar 

  20. G. Han, J. He, S. Fukuyama, and K. Yokogawa: Acta Mater., 1998, vol. 46, pp. 4559–70.

    Article  CAS  Google Scholar 

  21. C.L. Briant and A.M. Ritter: Metall. Trans. A, 1981, vol. 12A, pp. 910–13.

    ADS  Google Scholar 

  22. C.L. Briant: Scripta Metall., 1978, vol. 12, pp. 541–42.

    Article  CAS  Google Scholar 

  23. O.A. Hilders and M.G. Santana: Metallography, 1988, vol. 21, pp. 151–64.

    Article  CAS  Google Scholar 

  24. S.S.M. Tavares and M.P.C. Fonseca: J. Mater. Sci., 2003, vol. 38, pp. 3527–33.

    Article  CAS  Google Scholar 

  25. “ASTM E1820-03 Standard Test Method for Measurement of Fracture Toughness,” Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, 2003, vol. 01.03, pp. 1–34.

  26. “ASTM E8 Standard Test Methods for Tension Testing of Metallic Materials,” Annual Book of ASTM Standards, ASTM, West Conshohocken, PA, 2000, vol. 03.03, pp. 1–22.

  27. A.K. De, D.C. Murdock, M.C. Mataya, J.G. Speer, and D.K. Matlock: Scripta Mater., 2004, vol. 50, pp. 1445–49.

    Article  CAS  Google Scholar 

  28. M.S. Laws and P.J. Goodhew: Acta Metall. Mater., 1991, vol. 39, pp. 1525–33.

    Article  CAS  Google Scholar 

  29. H.U. Hong and S.W. Nam: Mater. Sci. Eng., A, 2002, vol. 332, pp. 255–61.

    Article  Google Scholar 

  30. S.M. Bruemmer and L.A. Charlot: Scripta Metall., 1986, vol. 20, pp. 1019–24.

    Article  CAS  Google Scholar 

  31. P.I. Williams and R.G. Faulkner: J. Mater. Sci., 1987, vol. 22, pp. 3537–42.

    Article  CAS  ADS  Google Scholar 

  32. L. Cihal, T. Shouji, V. Kain, Y. Watanabe, and R. Stefac: EPR—A Comprehensive Review, Fracture Reliability and Research Institute, Sendai, Japan, 2004, pp. 9–20.

  33. K.J. Kozaczek, A. Sinharoy, C.O. Ruud, and A.R. McIlree: Modell. Simul. Mater. Sci. Eng., 1995, vol. 3, pp. 829–43.

    Article  CAS  ADS  Google Scholar 

  34. T. Sourmail and H.K.D.H. Bhadeshia: CALPHAD, 2003, vol. 27, pp. 169–75.

    Article  CAS  Google Scholar 

  35. W.M. Garrison, Jr. and N.R. Moody: J. Phys. Chem. Solids, 1987, vol. 48, pp. 1035–74.

    Article  CAS  ADS  Google Scholar 

  36. G.E. Dieter: Mechanical Metallurgy, 3rd ed., McGraw-Hill Book Co., New York, NY, 1986, pp. 262–65.

    Google Scholar 

  37. A. Das, S.K. Das, S. Sivaprasad, and S. Tarafder: Scripta Mater., 2008, vol. 59, pp. 681–83.

    Article  CAS  Google Scholar 

  38. F.M. Haggag, R.K. Nanstad, J.T. Hutton, D.L. Thomas, and R.L. Swain: ASTM 1092, ASTM, Philadelphia, PA, 1990, pp. 188–208.

    Google Scholar 

  39. T.S. Byun, J.W Kim, and J.H. Hong: J. Nucl. Mater., 1998, vol. 252, pp. 187–94.

    Article  CAS  ADS  Google Scholar 

  40. K.L. Murty and M.D. Mathew: Nucl. Eng. Des., 2004, vol. 228, pp. 81–96.

    Article  CAS  Google Scholar 

  41. A. Bhattacharyya: Master’s Thesis, Indian Institute of Technology, Kharagpur, India, 2006.

  42. D.A. Curry and J.F. Knott: Met. Sci., 1979, vol. 13, pp. 341–45.

    CAS  Google Scholar 

Download references

Acknowledgments

One of the authors (SG) thanks the Department of Atomic Energy (DAE), Government of India (Mumbai, India), for the financial support to carry out this investigation under the DAE Graduate Fellowship Scheme. The authors specifically thank Drs. B.P. Sharma, R.R. Puri, K.R. Maraballi, and S. Trehan, Bhabha Atomic Research Centre (Mumbai, India), for their kind and timely support from the Department of Atomic Energy Graduate Fellowship Scheme (DGFS) Board of Research in Nuclear Sciences (BRNS) cell. The authors also thank Mr. A. Bhattacharya, a former graduate student, Department of Metallurgical and Materials Engineering, Indian Institute of Technology (Kharagpur, India), for his kind suggestions and critical discussions on the subject matter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Ray.

Additional information

Manuscript submitted December 31, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, S., Kain, V., Ray, A. et al. Deterioration in Fracture Toughness of 304LN Austenitic Stainless Steel Due to Sensitization. Metall Mater Trans A 40, 2938–2949 (2009). https://doi.org/10.1007/s11661-009-0023-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-0023-y

Keywords

Navigation