Skip to main content
Log in

Reaction Scheme and Liquidus Surface of the Ternary System Aluminum-Chromium-Titanium

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The constitution of the ternary system Al-Cr-Ti is investigated over the entire composition range using X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), differential thermal analysis (DTA) up to 1500 °C, and metallography. Solid-state phase equilibria at 900 °C are determined for alloys containing ≤75 at. pct aluminum and at 600 °C for alloys containing >75 at. pct Al. A reaction scheme linking these solid-state equilibria with the liquidus surface is presented. The liquidus surface for ≤50 at. pct aluminum is dominated by the primary crystallization field of bcc β(Ti,Cr,Al). In the region >50 at. pct Al, the ternary L12-type phase τ forms in a peritectic reaction p max at 1393 °C from L + TiAl. Furthermore, with the addition of chromium, the binary peritectic L + α(Ti,Al) = TiAl changes into an eutectic L = α(Ti,Al) + TiAl. This eutectic trough descends monotonously through a series of transition reactions and ternary peritectics to end in the binary eutectic L = Cr7Al45 + (Al).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. V. Raghavan: J. Phase Equil. Diff., 2005, vol. 26, pp. 349–56.

    CAS  Google Scholar 

  2. T.J. Jewett, B. Ahrens, and M. Dahms: Mater. Sci. Eng., 1995, vol. A225, pp. 29–37.

    Google Scholar 

  3. S. Hao and N. Zeng: Acta Metall. Sinica, 1995, vol. 31, pp. 153–58.

    Google Scholar 

  4. M. Palm and G. Inden: in Structural Intermetallics 1997, M.V. Nathal, R. Dariola, C.T. Liu, P.L. Martin, D.B. Miracle, R. Wagner, and M. Yamaguchi, eds., TMS, Warrendale, PA, 1997, pp. 73–82.

    Google Scholar 

  5. G. Schwanold and G. Inden: in Materialwissenschaftliche Grundlagen, F. Aldinger and H. Mughrabi, eds., DGM Informationsgesellschaft, Oberursel, Germany, 1997, pp. 121–26.

    Google Scholar 

  6. H.H. Xu, Z.P. Jin, and R. Wang: Scripta Mater., 1997, vol. 10, pp. 1469–73.

    Google Scholar 

  7. E.M. Sokolovskaya, E.F. Kazakova, E.I. Podd’yakova, V.K. Portnoi, and A.A. Temirbaeva: Vestn. Mosk. Univ. Ser.2: Khim., 1994, vol. 35, pp. 453–54.

    CAS  Google Scholar 

  8. E. Ence, P.A. Farrar, and H. Margolin: Wright Air Development Division Technical Report No. 60-316, Wright Air Development Division, Air Research and Development Command, United States Air Force, Wright Patterson Air Force Base, OH, 1960, pp. 1–20.

  9. G. Shao and P. Tsakiropoulos: Intermetallics, 1999, vol. 7, pp. 579–87.

    Article  CAS  Google Scholar 

  10. J.C. Schuster and M. Palm: Intermetallics, 2006, vol. 14, pp. 1304–11.

    Article  CAS  Google Scholar 

  11. H. Mabuchi, H. Tsuda, T. Matsui, and K. Morii: Mater. Trans. JIM, 1997, vol. 38, pp. 560–65.

    CAS  Google Scholar 

  12. M. Ichimaru, N. Mori, and Y. Miura: J. Jap. Inst. Light Met., 2001, vol. 51, pp. 640–45.

    Article  CAS  Google Scholar 

  13. Binary Alloy Phase Diagrams, 2nd ed., T.B. Massalski, ed., ASM INTERNATIONAL, Materials Park, OH, 1990.

  14. H.L. Chen, F. Weitzer, and J.C. Schuster: Poster presented at 12th Int. IUPAC-Conf. on “High Temperature Materials Chemistry HTMC-XII,” Vienna, Austria, 2006.

  15. W.Koester, E.Wachtel, and K.Grube: Z. Metallkd., 1963, vol. 54, pp. 393–401.

    CAS  Google Scholar 

  16. L.G. Akselrud, Y.N. Grin, P.Y. Zavalij, V.K. Pecharsky, and V.S. Fundamensky: Coll. Abstr. 12th Eur. Crystallographic Meeting, Moskow, 1989; Izv. Akad. Nauk SSSR, Moskov, 1989, vol. 3, p. 155.

  17. W. Wacha: Master’s Thesis, Vienna Institute of Technology, Vienna, Austria, 1989.

  18. N. Krendelsberger, F. Weitzer, and J.C. Schuster: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1681–91.

    Article  CAS  ADS  Google Scholar 

  19. K. Hashimoto, M. Kimura, and Y. Mizuhara: Intermetallics, 1998, vol. 6, pp. 667–72.

    Article  CAS  Google Scholar 

  20. B.B. Cao and K.H. Kuo: J. Alloys Compd., 2008, vol. 458, pp. 238–47.

    Article  CAS  ADS  Google Scholar 

  21. F.H. Hayes: J. Phase Diagram Equil., 1992, vol. 13, pp. 79–86.

    Article  CAS  Google Scholar 

  22. M. Hillert: J. Iron Steel Inst., 1958, vol. 189, pp. 224–26.

    CAS  Google Scholar 

  23. S.C. Huang and E.L. Hall: Metall. Trans. A, 1991, vol. 22, pp. 2619–27.

    Article  Google Scholar 

  24. O.M. Barabash, Y.V. Milman, D.V. Miracle, M.V. Karpets, N.P. Korzhova, T.N. Legkaya, N.M. Mordovets, Y.N. Podrezov, and I.V. Voskoboinik: Intermetallics, 2003, vol. 11, pp. 953–62.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported, in part, by the Austrian Science Foundation (Grant Nos. P12843 and P12113) and the Scientific-Technological Cooperation between Austria and the People’s Republic of China (ÖAD Grant No. WTZ VII.B.9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julius C. Schuster.

Additional information

Manuscript submitted February 6, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H., Weitzer, F., Krendelsberger, N. et al. Reaction Scheme and Liquidus Surface of the Ternary System Aluminum-Chromium-Titanium. Metall Mater Trans A 40, 2980–2986 (2009). https://doi.org/10.1007/s11661-009-0014-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-0014-z

Keywords

Navigation