Skip to main content
Log in

Diffusion of Au in the Intermetallic Compound Ti3Al

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The Au diffusion in the Ti3Al compound was investigated at six compositions from 25 to 35 at. pct Al by using the diffusion couples (Ti-X at. pct Al/Ti-X at. pct Al-2 at. pct Au; X = 25, 27, 29, 31, 32, and 35) at 1273 to 1423 K. The diffusion coefficients of Au in Ti3Al \( \left( {D_{\text{Au}}^{{{\text{Ti}}_{3} {\text{Al}}}} } \right) \) are relatively close to those of Ti. The \( {D}_{\text{Au}}^{{{\text{Ti}}_{3} {\text{Al}}}} {\text{s}} \) slightly increase with Al concentration within the same order of magnitude. The activation energies of Au diffusion, \( Q_{\text{Au}}^{{{\text{Ti}}_{3} {\text{Al}}}} {\text{s}}, \) evaluated from the Arrhenius plots were relatively close to those of Ti diffusion, \( Q_{\text{Ti}}^{{{\text{Ti}}_{3} {\text{Al}}}} {\text{s}}, \) rather than those of Al diffusion, \( {Q}_{\text{Al}}^{{{\text{Ti}}_{3} {\text{Al}}}} {\text{s}}; \) therefore, it was suggested that Au atoms diffuse by the sublattice diffusion mechanism in which Au atoms substitute for Ti sites preferentially in Ti3Al and diffuse by vacancy mechanism on Ti sublattice. The influence of the D019 ordered structure (hcp base) of Ti3Al on diffusion of Au and other elements is discussed by comparing the diffusivities in Ti3Al and α-Ti.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. Banerjee: in Intermetallic Compounds, J.H. Westbrook and R.L. Fleischer, eds., John Wiley and Sons Ltd., New York, NY, pp. 91–131.

  2. G. Sauthoff: Mater. Corros., 1996, vol. 47, pp. 589–94.

    Article  CAS  Google Scholar 

  3. S. Li, Y.K. Lee, W. Gao, T. White, Z.L. Dong, and K.M. Latt: J. Vac. Sci. Technol. B, 2001, vol. 19, pp. 388–96.

    Article  CAS  Google Scholar 

  4. S. Aggarwal, I. Nagaraj, I.G. Jenkins, H. Li, R.P. Sharma, L. Salamanca-Riba, R. Ramesh, A.M. Dhote, A.R. Krauss, and O. Auciello: Acta Mater., 2000, vol. 48, pp. 3387–94.

    Article  CAS  Google Scholar 

  5. A.M. Dhote, O. Auciello, and D.M. Gruen: Appl. Phys. Lett., 2001, vol. 79, pp. 800–02.

    Article  CAS  ADS  Google Scholar 

  6. J. Rüsing and C. Herzig: Intermetallics, 1996, vol. 4, pp. 647–57.

    Article  Google Scholar 

  7. J. Breuer, T. Wilger, M. Friesel, and C. Herzig: Intermetallics, 1999, vol. 7, pp. 381–88.

    Article  CAS  Google Scholar 

  8. Y. Koizumi, Y. Sakakibara, Y. Minamino, and N. Tsuji: Def. Diffus. Forum, 2004, vols. 237–240, pp. 334–39.

    Google Scholar 

  9. Y. Koizumi, M. Kishimoto, Y. Minamino, and H. Nakajima: Philos. Mag., 2008, vol. 88, pp. 2991–3010.

    Article  CAS  ADS  Google Scholar 

  10. C. Herzig, M. Friesel, D. Derdau, and S.V. Divinski: Intermetallics, 1999, vol. 7, pp. 1141–51.

    Article  CAS  Google Scholar 

  11. H. Numakura, T. Ikeda, H. Nakajima, and M. Koiwa: Mater. Sci. Eng. A, 2001, vol. 312, pp. 109–17.

    Article  Google Scholar 

  12. Y. Mishin and C. Herzig: Acta Mater., 2000, vol. 48, pp. 589–623.

    Article  CAS  Google Scholar 

  13. Y. Minamino, S.B. Jung, T. Yamane, and K. Hirao: Metall. Trans. A, 1992, vol. 23A, pp. 2783–90.

    CAS  ADS  Google Scholar 

  14. Y. Minamino, T. Yamane, S. Saji, K. Hirao, S.B. Jung, and T. Kohira: J. Jpn. Inst. Met., 1994, vol. 58, pp. 397–403.

    CAS  Google Scholar 

  15. Y. Minamino, H. Yoshida, S.B. Jung, K. Hirao, and T. Yamane: Def. Diffus. Forum, 1997, vols. 143–147, pp. 257–62.

    Article  Google Scholar 

  16. S.V. Divinski, S.T. Frank, U. Sodervall, and C. Herzig: Acta Mater., 1998, vol. 46, pp. 4369–80.

    Article  CAS  Google Scholar 

  17. J.L. Jorda, J. Muller, H.F. Braun, and C. Susz: J. Less-Common Met., 1987, vol. 134, pp. 99–107.

    Article  CAS  Google Scholar 

  18. I. Uchiyama, A. Watanabe, and S. Kimoto: X-ray Microanalyzer, Nikkan Kogyo Shinbunsha, Tokyo, 1972, pp. 172–89 (in Japanese).

    Google Scholar 

  19. J.S. Kirkaldy and D.J. Young: Diffusion in the Condensed State, Institute of Metals, London, 1987, pp. 150–71.

    Google Scholar 

  20. L.D. Hall: J. Chem. Phys., 1953, vol. 21, pp. 87–89.

    Article  CAS  ADS  Google Scholar 

  21. Y. Koizumi, M. Yoshiya, A. Sugihara, and Y. Minamino: Osaka University, Osaka, 2009, unpublished research

  22. H. Numakura, T. Ikeda, H. Nakajima, and M. Koiwa: Mater. Sci. Eng. A, 2001, vol. 312, pp. 109–17.

    Article  Google Scholar 

  23. M. Köppers, C. Herzig, M. Friesel, and Y. Mishin: Acta Mater., 1997, vol. 45, pp. 4181–91.

    Article  Google Scholar 

  24. J. Räisänen, A. Attila, and J. Keinonen: J. Appl. Phys., 1985, vol. 57, pp. 613–14.

    Article  ADS  Google Scholar 

  25. R.A. Peres, H. Nakajima, and F. Dyment: Mater. Trans., 2003, vol. 44, pp. 2–13.

    Article  Google Scholar 

  26. J. Räisänen and J. Keinonen: Appl. Phys. Lett., 1986, vol. 49, pp. 773–75.

    Article  ADS  Google Scholar 

  27. O. Taguchi and Y. Iijima: Philos. Mag. A, 1995, vol. 72, pp. 1649–55.

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgment

This research was partly supported by the Grant-in-Aid for Scientific Research Program of the Japan Society for the Promotion of Science (No. 14702051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Koizumi.

Additional information

Manuscript submitted January 8, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koizumi, Y., Tanaka, T. & Minamino, Y. Diffusion of Au in the Intermetallic Compound Ti3Al. Metall Mater Trans A 40, 2919–2926 (2009). https://doi.org/10.1007/s11661-009-0011-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-0011-2

Keywords

Navigation