Skip to main content
Log in

Correlation of Microstructure, Hardness, and Fracture Toughness of Fe-Based Surface Composites Fabricated by High-Energy Electron Beam Irradiation with Fe-Based Metamorphic Alloy Powders and VC Powders

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Iron-based surface composites were fabricated with Fe-based metamorphic alloy powders and VC powders by high-energy electron beam irradiation, and the correlation of their microstructure with hardness and fracture toughness was investigated. Mixtures of metamorphic powders and VC powders were deposited on a plain carbon steel substrate, and then the electron beam was irradiated on these powders without flux, to fabricate surface composites. The composite layers 1.3 to 1.8 mm in thickness contained a large amount (up to 47 vol pct) of hard Cr2B and V8C7 particles formed in eutectic colony regions and inside colonies, respectively. The hardness of the surface composites was approximately 2 to 4 times greater than that of the substrate because of Cr2B and V8C7 particles. According to the microfracture observation of the composite fabricated with mixing 30 wt pct VC powders, microcracks initiated at coarse V8C7 particles ins inside colonies as well as at Cr2B particles in colony regions, and were connected with other microcracks in a zigzag shape. Thus, it showed a higher fracture toughness and hardness twice as high as the composite fabricated without mixing VC powders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K. Euh, S. Lee, and K. Shin: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 3143–51.

    Article  CAS  Google Scholar 

  2. P. Jiang, X.L. He, X.X. Li, L.G. Yu, and H.M. Wang: Surf. Coat. Technol., 2000, vol. 130, pp. 24–28.

    Article  CAS  Google Scholar 

  3. L.E. Rehn, S.T. Picraux, and H. Wiedersich: Surface Alloying by Ion, Electron, and Laser Beam, ASM INTERNATIONAL, Materials Park, OH, 1985, pp. 1–17.

    Google Scholar 

  4. A.P. Loureiro, O. Conde, L. Guerra-Rossa, and R. Vilar: Surface Engineering with High Energy Beams, Trans Tech Publications, Brookfield, VT,1990, pp. 1–13.

    Google Scholar 

  5. S. Schiller, U. Heisig, and S. Panzer: Electron Beam Technology, John Wiley & Sons, VEB Verlag Technik, Berlin, 1982, pp. 29–47.

    Google Scholar 

  6. E. Yun and S. Lee: Mater. Sci. Eng., A, 2005, vol. 405, pp. 163–72.

    Article  CAS  Google Scholar 

  7. A. Basu, A.N. Samant, S.P. Harimkar, J.D. Majumdar, I. Manna, and N.B. Dahotre: Surf. Coat. Technol., 2008, vol. 202, pp. 2623–31.

    Article  CAS  Google Scholar 

  8. D. Nam, J. Do, and S. Lee: Scripta Mater., 2009, vol. 60, pp. 695–98.

    Article  CAS  Google Scholar 

  9. K.-H. Kim, S.-W. Lee, J.-P. Ahn, E. Fleury, Y.-C. Kim, and J.-C. Lee: Met. Mater. Int., 2007, vol. 13, pp. 21–24.

    Article  ADS  CAS  Google Scholar 

  10. C.-M. Lee, S.-W. Chae, H.-J. Kim, and J.-C. Lee: Met. Mater. Int., 2007, vol. 13, pp. 191–96.

    Article  CAS  Google Scholar 

  11. J.C. Oh, K. Euh, S. Lee, Y. Koo, and N.J. Kim: Scripta Mater., 1998, vol. 39, pp. 1389–94.

    Article  CAS  Google Scholar 

  12. K. Lee, K. Euh, D.-H. Nam, S. Lee, and N.J. Kim: Mater. Sci. Eng., A, 2007, vols. A449–A451, pp. 937–40.

    Google Scholar 

  13. K.-W. Park, M. Wakeda, Y. Shibutani, E. Fleury, and J.-C. Lee: Met. Mater. Int., 2008, vol. 14, pp. 159–63.

    Article  CAS  Google Scholar 

  14. C.C. Degnan and P.H. Shipway: Wear, 2002, vol. 252, pp. 832–41.

    Article  CAS  Google Scholar 

  15. L. Davis: An Introduction to Welding Fluxes for Mild and Low Carbon Steels, TWI, Ablington Hall, Cambridge, United Kingdom, 1981, pp. 1–16.

    Google Scholar 

  16. S.K. Wu, H.C. Lin, and C.H. Yeh: Wear, 2000, vol. 244, pp. 85–93.

    Article  CAS  Google Scholar 

  17. K. Lee, D.-H. Nam, S. Lee, and C.P. Kim: Mater. Sci. Eng., A, 2006, vol. 428, pp. 124–34.

    Article  CAS  Google Scholar 

  18. T. Troczynski: Acta Mater., 1997, vol. 45, pp. 1445–54.

    Article  CAS  Google Scholar 

  19. S.-J. Lee, B.-G. Yoo, J.-I. Jang, and J.-C. Lee: Met. Mater. Int., 2008, vol. 14, pp. 9–13.

    Article  CAS  Google Scholar 

  20. H.J. Kim, S. Grossi, and Y.G. Kweon: Wear, (1999), vol. 232, pp. 51–60.

    Article  CAS  Google Scholar 

  21. H.W. Jin, C.G. Park, and M.C. Kim: Scripta Mater., 1999, vol. 49, pp. 589–95.

    Google Scholar 

  22. K. Lee, D.-H. Nam, and S. Lee, and C.P. Kim: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1485–94.

    Article  CAS  Google Scholar 

  23. M. Bauccio: ASM Engineered Materials Reference Book, 2nd ed., ASM INTERNATIONAL, Materials Park, OH, 1994, pp. 283–84.

    Google Scholar 

  24. S.N. Fadeev, M.G. Golkovski, A.I. Korchagin, A.V. Lavruhin, S.E. Petrov, R.A. Salimov, and A.F. Vaisman: Radiat. Phys. Chem., 2000, vol. 57, pp. 653–55.

    Article  ADS  CAS  Google Scholar 

  25. G. Petzow: Metallographic Etching, ASM INTERNATIONAL, Metals Park, OH, 1976, p. 65.

    Google Scholar 

  26. J.C. Oh and S. Lee: Surf. Coat. Technol., 2004, vol. 179, pp. 340–48.

    Article  CAS  Google Scholar 

  27. S. Lee, K.-S. Sohn, I. Park, and K. Cho: Met. Mater., 1995, vol. 1, pp. 37–46.

    MATH  CAS  Google Scholar 

  28. Y.-H. Kim, D. Kwon, and S. Lee: Acta Metall., 1994, vol. 42, pp. 1887–91.

    Article  CAS  Google Scholar 

  29. “ASTM E399-83Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials,” Annual Book of ASTM Standards, ASTM INTERNATIONAL, Philadelphia, PA, 1997.

  30. T. Tabata and R. Ito: Nucl. Sci. Eng., 1974, vol. 53, pp. 226–39.

    CAS  Google Scholar 

  31. J.C. Oh, D.-K. Choo, and S. Lee: Surf. Coat. Technol., 2000, vol. 127, pp. 76–85.

    Article  Google Scholar 

  32. A.H. Ücisik and C. Bindal: Surf. Coat. Technol., 1997, vol. 94, pp. 561–65.

    Article  Google Scholar 

  33. K. Euh and S. Lee: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 59–69.

    Article  CAS  Google Scholar 

  34. S. Lee, S. Kim, B. Hwang, and C.G. Lee: Acta Mater., 2002, vol. 50, pp. 4755–62.

    Article  CAS  Google Scholar 

  35. D. Suh, S. Lee, Y. Koo, and H.C. Lee: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3149–61.

    Article  ADS  CAS  Google Scholar 

  36. D. Suh, S. Lee, S.-J. Kwon, and Y. Koo: Mater. Sci. Eng., A, 1998, vol. 248, pp. 245–55.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Laboratory Program (Grant No. ROA-2004-000-10361-0) funded by the Korea Science and Engineering Foundation (KOSEF), Daejeon, Korea. The authors are grateful to Drs. M.G. Golkovski and N. Kuksanov, Budker Institute of Nuclear Physics, and Dr. Kyuhong Lee, POSTECH, for their helpful discussion on the fabrication of the surface composites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghak Lee.

Additional information

Manuscript submitted December 31, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nam, DH., Do, J. & Lee, S. Correlation of Microstructure, Hardness, and Fracture Toughness of Fe-Based Surface Composites Fabricated by High-Energy Electron Beam Irradiation with Fe-Based Metamorphic Alloy Powders and VC Powders. Metall Mater Trans A 40, 2959–2970 (2009). https://doi.org/10.1007/s11661-009-0004-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-0004-1

Keywords

Navigation