Skip to main content

Advertisement

Log in

High-Temperature Creep Deformation and Fracture Behavior of a Directionally Solidified Ni-Base Superalloy DZ951

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The high-temperature creep deformation and fracture behavior of a directionally solidified Ni-base superalloy DZ951 have been investigated over a wide stress range of 110 to 880 MPa at high temperatures (700 °C to 1000 °C). In this article, the detailed creep deformation and fracture mechanism have been studied. The results show that the creep curves exhibit strong temperature dependence. From transmission election microscopy (TEM) observations, it is suggested that the deformation mechanism is temperature dependent and mainly consists of three dislocation-controlling mechanisms: stacking faults and dislocation-pair shearing, dislocation bowing, and dislocation climbing. It is found that the fracture mode of DZ951 alloy changes from cleavagelike fracture at low temperature to ductile fracture at high temperature. At 700 °C, the creep cracks mainly initiate at the surface and propagate along the cleavagelike facets. With increasing temperature, cracks can initiate at the surface, carbide/matrix interface, and cast pore. The growth of microcrack has a direction perpendicular to the stress direction. The creep-rupture data follow the Monkman–Grant relationship in different temperature regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. JEOL is a trademark of JEOL Ltd., Tokyo, Japan.

  2. PHILIPS is a trademark of FEI Company, Hillsboro, OR.

References

  1. F.L. VerSynder and R.W. Guard: Trans. ASM, 1960, vol. 32, pp. 485–93.

    Google Scholar 

  2. F.L. VerSynder and M.E. Shank: Mater. Sci. Eng., 1970, vol. 6, pp. 213–47.

    Article  Google Scholar 

  3. M. McLean: Directionally Solidified Materials for High Temperature Service, TMS, London, 1983, pp. 180–89.

    Google Scholar 

  4. D.N. Duhl: in Superalloys II, C.T. Sims, N.S. Stoloff, and W.C. Hagel, eds., John Wiley and Sons, New York, NY, 1987, pp. 189–92.

    Google Scholar 

  5. F.R.N. Nabarro and H.L. de Villiers: The Physics of Creep, Taylor and Francis, London, 1995, pp. 83–97.

    Google Scholar 

  6. L.R. Liu, T. Jin, N.R. Zhao, Z.H. Wang, X.F. Sun, H.R. Guan, and Z.Q. Hu: Mater. Sci. Eng. A, 2003, vol. 361, pp. 191–97.

    Article  Google Scholar 

  7. L.R. Liu, T. Jin, N.R. Zhao, Z.H. Wang, X.F. Sun, H.R. Guan, and Z.Q. Hu: Mater. Sci. Eng. A, 2004, vol. 385, pp. 105–12.

    Article  Google Scholar 

  8. Q.Z. Chen, C.N. Jones, and D.M. Knowles: Mater. Sci. Eng. A, 2004, vol. 385, pp. 402–18.

    Google Scholar 

  9. X.B. Liu, B. Kang, W. Carpenter, and E. Barbero: J. Mater. Sci., 2004, vol. 39, pp. 1967–73.

    Article  CAS  ADS  Google Scholar 

  10. U. Krupp, R. Orosz, H.J. Christ, U. Buschmann, and W. Wiechert: Mater. Sci. Forum, 2004, vols. 461–464, pp. 37–43.

    Article  Google Scholar 

  11. A. Jacques and P. Bastie: Phil. Mag., 2003, vol. 83, pp. 3005–27.

    Article  CAS  ADS  Google Scholar 

  12. R.C. Reed, N. Matan, D.C. Cox, M.A. Rist, and C.M.F. Rae: Acta Mater., 1999, vol. 47, pp. 3367–81.

    Article  CAS  Google Scholar 

  13. M. Kolbe, K. Neuking, and G. Eggeler: Mater. Sci. Eng. A, 1997, vol. 234, pp. 877–79.

    Article  Google Scholar 

  14. M. Kolbe, A. Dlouhy, and G. Eggeler: Mater. Sci. Eng. A, 1998, vol. 246, pp. 133–42.

    Article  Google Scholar 

  15. V. Sass and M. Feller-Kniepmeier: Mater. Sci. Eng. A, 1998, vol. 245, pp. 19–28.

    Article  Google Scholar 

  16. S. Nategh and S.A. Sajjadi: Mater. Sci. Eng. A, 2003, vol. 339, pp. 103–08.

    Article  Google Scholar 

  17. A.C. Picasso, A.J. Marzocca, and I. Alvarez: Mater. Sci. Eng. A, 1997, vol. 234, pp. 1099–1102.

    Article  Google Scholar 

  18. R. Srinicasan, G.F. Eggeler, and M.J. Mills: Acta Mater., 2000, vol. 48, pp. 4867–78.

    Article  Google Scholar 

  19. T. Tong, S. Dalby, J. Byrne, M.B. Henderson, and M.C. Hardy: Int. J. Fatigue, 2001, vol. 23, pp. 897–902.

    Article  CAS  Google Scholar 

  20. M. Okazaki and Y. Yamazaki: Int. J. Fatigue, 1999, vol. 21, pp. 79–86.

    Article  Google Scholar 

  21. Z.K. Chu, J.J. Yu, X.F. Sun, N.R. Zhao, H.R. Guan, and Z.Q. Hu: Trans. Nonferrous Metall. Soc. China, 2006, vol. 16, pp. 1949–52.

    CAS  Google Scholar 

  22. P.C. Xia, J.J. Yu, X.F. Sun, H.R. Guan, and Z.Q. Hu: J. Alloys Compd., 2006, vol. 443, pp. 125–31.

    Article  Google Scholar 

  23. J.H. Gittus: Creep Viscoelasticity and Creep Fracture in Solids, Applied Science, London, 1975, pp. 473–79.

    Google Scholar 

  24. S.A. Sajjadi and S. Nategh: Mater. Sci. Eng. A, 2001, vol. 307, pp. 158–64.

    Article  Google Scholar 

  25. L.Z. He, Q. Zheng, X. F. Sun, H.R. Guan, Z.Q. Hu, A.K. Tieu, C. Lu, and H.T. Zhu: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2385–91.

    Article  CAS  ADS  Google Scholar 

  26. F.C. Monkman and N.J. Grant: Proc. ASTM, 1956, vol. 56, pp. 593–620.

    Google Scholar 

  27. A.K. Koul, R. Castillo, and K. Willett: Mater. Sci. Eng., 1984, vol. 66, pp. 213–26.

    Article  CAS  Google Scholar 

  28. S.A. Sajjadi, S. Nategh, and R.I.L. Guthrie: Mater. Sci. Eng. A, 2002, vol. 325, pp. 484–89.

    Article  Google Scholar 

  29. G.L. Erickson, K. Harris, and R.E. Schwer: TMS-AIME Meeting, Houston, TX, Mar. 1985, pp. 1–10.

  30. T. Link and M. Feller-Kniepmeier: Metall. Trans. A, 1992, vol. 23A, pp. 99–105.

    CAS  ADS  Google Scholar 

  31. B.H. Kear, J.M. Oblak, and A.F. Giamei: Metall. Trans., 1970, vol. 1, pp. 2477–86.

    CAS  Google Scholar 

  32. P.R. Bhowal, E.F. Wright, and E.L. Raymond: Metall. Trans. A, 1990, vol. 21A, pp. 1709–17.

    CAS  ADS  Google Scholar 

  33. B.A. Lerch and V. Gerold: Acta Metall., 1985, vol. 33, pp. 1709–16.

    Article  CAS  Google Scholar 

  34. B.A. Lerch and V. Gerold: Metall. Trans. A, 1987, vol. 18A, pp. 2135–41.

    CAS  ADS  Google Scholar 

  35. S.G. Tian, J.H. Zhang, H.C. Yang, Y.B. Xu, and Z.Q. Hu: Mater. Sci. Eng. A, 1999, vol. 262, pp. 271–78.

    Article  Google Scholar 

  36. T.M. Pollock and A.S. Argon: Acta Metall. Mater., 1992, vol. 42, pp. 1–30.

    Google Scholar 

  37. T.P. Gabb, S.L. Draper, D.R. Hull, R.A. Mackay, and M.V. Nathal: Mater. Sci. Eng. A, 1989, vol. 118, pp. 59–69.

    Article  Google Scholar 

  38. J.T. Guo, D. Ranucci, E. Picco, and P.M. Strocchi: Metall. Trans. A, 1983, vol. 14A, pp. 2329–35.

    CAS  ADS  Google Scholar 

  39. J.T. Guo, C. Yuan, H.C. Yang, V. Lupinc, and M. Maldini: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1103–10.

    Article  CAS  ADS  Google Scholar 

  40. R.S. Mishra, S.P. Singh, A.M. Sriramamurthy, and M.C. Pandey: Mater. Sci. Technol., 1995, vol. 11, pp. 341–45.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaokuang Chu.

Additional information

Manuscript submitted November 30, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, Z., Yu, J., Sun, X. et al. High-Temperature Creep Deformation and Fracture Behavior of a Directionally Solidified Ni-Base Superalloy DZ951. Metall Mater Trans A 40, 2927–2937 (2009). https://doi.org/10.1007/s11661-009-0001-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-0001-4

Keywords

Navigation