Skip to main content
Log in

Dislocation Boundary Structure from Low to Medium Strain of Cold Rolling AA3104 Aluminum Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The evolution of the dislocation boundary structure during the cold rolling of the AA3104 aluminum alloy has been investigated using electron channeling contrast (ECC) imaging and electron backscattered diffraction (EBSD) techniques. The results show that there is a strong correlation between the dislocation boundary structure and the grain orientation. No strong effect of strain level or second-phase particles on the structure-orientation correlation is found. Based on these observations, the microstructures can be classified into one of three types: type A grains, containing two sets of geometrically necessary boundaries (GNBs), type B grains, containing one set of GNBs, and type C grains, consisting of a structure of large dislocation cells. Grains with a type A microstructure have orientations near the copper, brass, and Goss orientations; grains with a type B microstructure are primarily near the S orientation; and grains with a type C microstructure have orientations near the cube orientation. The alignment of the extended dislocation boundaries depends strongly on the grain orientation. In most grains, the boundaries are parallel to the traces of the most active {111} slip planes, as identified by a Schmid factor analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. Kuhlmann-Wilsdorf and N. Hansen: Scripta Metall. Mater., 1991, vol. 25, pp. 1557–62.

    Article  CAS  Google Scholar 

  2. Q. Liu and N. Hansen: Scripta Mater., 1995, vol. 32, pp. 1289–95.

    Article  CAS  Google Scholar 

  3. P.J. Hurley and F.J. Humphreys: Acta Mater., 2003, vol. 51, pp. 1087–1102.

    Article  CAS  Google Scholar 

  4. P.J. Hurley, P.S. Bate, and F.J. Humphreys: Acta Mater., 2003, vol. 51, pp. 4737–50.

    Article  CAS  Google Scholar 

  5. F.J. Humphreys and P.S. Bate: Acta Mater., 2006, vol. 54, pp. 817–29.

    Article  CAS  Google Scholar 

  6. Q. Liu, D. Juul Jensen, and N. Hansen: Acta Mater., 1998, vol. 46, pp. 5819–38.

    Article  CAS  Google Scholar 

  7. G. Winther: Acta Mater., 2003, vol. 51, pp. 417–29.

    Article  CAS  Google Scholar 

  8. X. Huang and N. Hansen: Scripta Mater., 1997, vol. 37, pp. 1–7.

    Article  CAS  Google Scholar 

  9. N. Hansen and X. Huang: Acta Mater., 1998, vol. 46, pp. 1827–36.

    Article  CAS  Google Scholar 

  10. X. Huang and G. Winther: Philos. Mag., 2007, vol. 87, pp. 5189–5214.

    Article  ADS  CAS  Google Scholar 

  11. G. Winther and X. Huang: Philos. Mag., 2007, vol. 87, pp. 5215–35.

    Article  ADS  CAS  Google Scholar 

  12. B.L. Li, A. Godfrey, Q.C. Meng, Q. Liu, and N. Hansen: Acta Mater., 2004, vol. 52, pp. 1069–81.

    Article  CAS  Google Scholar 

  13. O. Engler, P. Yang, and X.W. Kong: Acta Mater., 1996, vol. 44, pp. 3349–69.

    Article  CAS  Google Scholar 

  14. P.J. Apps, J.R. Bowen, and P.B. Prangnell: Acta Mater., 2003, vol. 51, pp. 2811–22.

    CAS  Google Scholar 

  15. H.O. Asbeck and H. Mecking: Mater. Sci. Eng., 1978, vol. 34, pp. 111–19.

    Article  CAS  Google Scholar 

  16. W. Truszkowski, J. Krol, and B. Major: Metall. Trans. A, 1980, vol. 11A, pp. 749–58.

    CAS  Google Scholar 

  17. Z.J. Li, A. Godfrey, and Q. Liu: Acta Mater., 2004, vol. 52, pp. 149–60.

    Article  CAS  Google Scholar 

  18. R.K. Bolingbroke, G.J. Marshall, and R.A. Aicks: Proc. ICAA3, SINTEF Metallurgy, Trondheim, Norway, 1992, pp. 285–90.

  19. D.A. Hughes and N. Hansen: Metall. Trans A, 1993, vol. 24A, pp. 3871–86.

    Google Scholar 

  20. Q. Liu, C. Maurice, J. Driver, and N. Hansen: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2333–44.

    Article  CAS  Google Scholar 

  21. K. Morii, H. Mecking, and Y. Nkayama: Acta Metall., 1985, vol. 33, pp. 379–86.

    Article  CAS  Google Scholar 

  22. M. Feller-Kniepmeier and N. Wanderka: Proc. ICOTOM 8, J.S. Kallend and G. Gottstein, eds., TMS, Warrendale, PA, 1988, pp. 517–23.

  23. A. Godfrey, D. Juul Jensen, and N. Hansen: Acta Mater., 1998, vol. 46, pp. 823–33.

    Article  CAS  Google Scholar 

  24. A. Godfrey, D. Juul Jensen, and N. Hansen: Acta Mater., 1998, vol. 46, pp. 835–48.

    Article  Google Scholar 

  25. A. Godfrey, D. Juul Jensen, and N. Hansen: Acta Mater., 2001, vol. 49, pp. 2429–40.

    Article  CAS  Google Scholar 

  26. J.H. Driver, D. Juul Jensen, and N. Hansen: Acta Metall. Mater, 1994, vol. 42, pp. 3105–14.

    Article  ADS  CAS  Google Scholar 

  27. W.C. Liu, D. Juul Jensen, and J.G. Morris: Acta Mater., 2001, vol. 49, pp. 3347–67.

    Article  CAS  Google Scholar 

  28. J.C. Glez and J.H. Driver: Acta Mater., 2003, vol. 51, pp. 2989–3003.

    CAS  Google Scholar 

  29. Y. Huang, F.J. Humphreys, and M. Ferry: Acta Mater., 2000, vol. 48, pp. 2543–56.

    Article  CAS  Google Scholar 

  30. Q. Liu, X. Huang, D.J. Lloyd, and N. Hansen: Acta Mater., 2002, vol. 50, pp. 3789–3802.

    Article  CAS  Google Scholar 

  31. D.A. Hughes and N. Hansen: Acta Mater., 2000, vol. 48, pp. 2985–3004.

    Article  CAS  Google Scholar 

  32. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Pergamon Press, Oxford, United Kingdom, 2004, pp. 58–59.

    Google Scholar 

  33. F.J. Humphreys: Acta Metall., 1977, vol. 25, pp. 1323–44.

    Article  CAS  Google Scholar 

  34. F.J. Humphreys: Scripta Mater., 2000, vol. 43, pp. 591–96.

    Article  CAS  Google Scholar 

  35. G. Winther, X. Huang, A. Godfrey, and N. Hansen: Acta Mater., 2004, vol. 52, pp. 4437–46.

    Article  CAS  Google Scholar 

  36. G.E.G. Tucker: Acta Metall., 1964, vol. 12, pp. 1093–94.

    Article  Google Scholar 

  37. Q. Liu and N. Hansen: Phys. Status Solidi A, 1995, vol. 149, pp. 187–99.

    Article  CAS  Google Scholar 

  38. A.A. Ridha and W.B. Hutchinson: Acta Mater., 1982, vol. 30, pp. 1929–39.

    Article  CAS  Google Scholar 

  39. O. Daaland and E. Nes: Acta Mater., 1996, vol. 44, pp. 1389–1411.

    Article  CAS  Google Scholar 

  40. X. Huang: Mater. Sci. Eng., A, 2005, vol. 409, pp. 52–58.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China under Contract Nos. 50231030 and 50571051. One of the authors (ZY) gratefully acknowledges Zhang Zhiqing and Huang Tianlin, Chongqing University, for assistance with the EBSD experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Liu.

Additional information

Manuscript submitted May 14, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, Z., Huang, G., Godfrey, A. et al. Dislocation Boundary Structure from Low to Medium Strain of Cold Rolling AA3104 Aluminum Alloy. Metall Mater Trans A 40, 1487–1497 (2009). https://doi.org/10.1007/s11661-008-9777-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9777-x

Keywords

Navigation