Skip to main content
Log in

Effect of Temperature and Dynamic Loading on the Mechanical Properties of Copper-Alloyed High-Strength Interstitial-Free Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Crash resistance and formability relevant mechanical properties of a copper-alloyed interstitial-free (IF) steel processed under various conditions of batch annealing (BA), continuous annealing (CA), and postcontinuous annealing aging have been studied in a wide range of strain rate (3.33 × 10−4 to 200 s−1) and temperature (−100 °C to +20 °C). These properties have been compared with similarly processed traditional mild and high-strength IF steels. Assessment of various parameters such as strength, elongation, strain rate sensitivity of stress, strain-hardening capacity, temperature sensitivity of stress, activation volume, and specific energy absorption of all these steels implies that copper-alloyed IF steel is soft and formable in CA condition. It can be made stronger and more crash resistant than the conventional mild- or high-strength IF steels when aged to peak strength after CA. Room-temperature strain rate sensitivity of stress of the investigated steels exhibits a two-stage behavior. Copper in solution in ferrite causes solid solution softening at low temperatures (≤20 °C) and at high strain rates (200 s−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S. Hoile: Mater. Sci. Technol., 2000, vol. 16, pp. 1079–93.

    CAS  Google Scholar 

  2. H. Takechi: ISIJ Int., 1994, vol. 34, pp. 1–8.

    Article  CAS  Google Scholar 

  3. X. Yang, D. Vandershueren, J. Dilewijns, C. Standaert, and Y. Houbaert: ISIJ Int., 1996, vol. 36, pp. 1286–94.

    Article  CAS  Google Scholar 

  4. M. Hua, C.I. Garcia, and A.J. DeArdo: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1769–80.

    Article  CAS  Google Scholar 

  5. M. Pricryl, Y.P. Lin, and S.V. Subramanian: Scripta Metall. Mater., 1990, vol. 24, pp. 375–80.

    Article  Google Scholar 

  6. T. Senuma: ISIJ Int., 2001, vol. 41, pp. 520–32.

    Article  CAS  Google Scholar 

  7. R. Rana, W. Bleck, S.B. Singh, and O.N. Mohanty: Mater. Lett., 2007, vol. 61, pp. 2919–22.

    Article  CAS  Google Scholar 

  8. E. Hornbogen and R.C. Glenn: Trans. TMS- AIME, 1960, vol. 218, pp. 1064–70.

    CAS  Google Scholar 

  9. S.R. Goodman, S.S. Brenner, and J.R. Low, Jr.: Metall. Trans., 1973, vol. 4, pp. 2363–78.

    Article  CAS  Google Scholar 

  10. N. Maruyama, M. Sugiyama, T. Hara, and H. Tamehiro: Mater. Trans. JIM, 1999, vol. 40, pp. 268–77.

    CAS  Google Scholar 

  11. A. Deschamps, M. Militzer, and W.J. Poole: ISIJ Int., 2001, vol. 41, pp. 196–205.

    Article  CAS  Google Scholar 

  12. R. Rana, W. Bleck, S.B. Singh, and O.N. Mohanty: Steel Res. Int., 2007, vol. 78, pp. 612–21.

    CAS  Google Scholar 

  13. R. Rana, W. Bleck, S.B. Singh, and O.N. Mohanty: Steel Res. Int., 2007, vol. 78, pp. 622–30.

    CAS  Google Scholar 

  14. R. Rana, W. Bleck, S.B. Singh, and O.N. Mohanty: Steel Res. Int., 2007, vol. 78, pp. 631–37.

    CAS  Google Scholar 

  15. Vehicle Safety-ULSAB-AVC Crash Evaluations, ULSAB-AVC Consortium, Nov. 1999.

  16. K. Kishida: Nippon Steel Tech. Rep., 1995, No. 64, pp. 33–35.

  17. Y. Hosoya, M. Morita, K. Tahara, and O. Fukumoto: CAMP-ISIJ, 1992, vol. 5, pp. 1823–26.

    Google Scholar 

  18. IISI Committee Report: Recommended Practice for Dynamic Tensile Testing for Sheet Metals, 2004.

  19. ESIS Committee Report: Proposed Standard Method for Dynamic Tensile Tests: ESIS TC5, 1997.

  20. German Steel Association (VDEh) Report: Dynamic Tensile Testing Recommendation, 2004.

  21. W.T. Lankford, S.C. Snyder, and J.A. Bauscher: Trans. ASM, 1950, vol. 42, pp. 1197–1225.

    Google Scholar 

  22. G.E. Dieter: in Mechanical Metallurgy, McGraw-Hill, London, 1988, vol. p. 287.

  23. G.M. Worral, J.T. Buswell, C.A. English, M.G. Hetherington, and G.D.W. Smith: J. Nucl. Mater., 1987, vol. 148, pp. 107–14.

    Article  ADS  Google Scholar 

  24. W.J. Phythian, S. Dumbill, P. Brown, and R. Sinclair: Proc. 6th Int. Symp. on Environmental Degredation in Nuclear Power Systems–Water Reactors, R.E. Gold and E.P. Simonen, eds., TMS, San Diego, CA, 1993, pp. 729–37.

  25. H.C. Rogers: Annu. Rev. Mater. Sci., 1979, vol. 9, pp. 283–311.

    Article  CAS  Google Scholar 

  26. W.-S. Lee and C.-F. Lin: Mater. Sci. Eng. A, 1998, vol. 241, pp. 48–59.

    Article  Google Scholar 

  27. H. Conrad and S. Frederick: Acta Metall., 1962, vol. 10, pp. 1013–20.

    Article  CAS  Google Scholar 

  28. L. Meyer, W. Bleck, and W. Müschenborn: Proc. Int. Forum for Phys. Metall. of IF Steels, ISIJ and Nissoh Iwai Corp., Tokyo, 1994, pp. 203–22.

    Google Scholar 

  29. W. Bleck and I. Schael: Steel Res., 2000, vol. 71, pp. 173–78.

    CAS  Google Scholar 

  30. W. Bleck, P. Larour, and A. Bäumer: Proc. 3rd Int. Conf. on Advanced Materials Processing (ICAMP-3), Institute of Materials Engineering, Australasia, Melbourne, 2004, pp. 21–29.

  31. W.-S. Lee and C.-Y. Liu: Mater. Sci. Eng. A, 2006, vol. 426, pp. 101–13.

    Article  Google Scholar 

  32. H. Conrad and H. Wiederisch: Acta Metall., 1960, vol. 8, pp. 128–30.

    Article  Google Scholar 

  33. L. Shi and D.O. Northwood: Acta Metall. Mater., 1995, vol. 43, pp. 453–60.

    Article  CAS  Google Scholar 

  34. J. Syarif, T. Tsuchiyama, and S. Takaki: ISIJ Int., 2003, vol. 43, pp. 1100–04.

    Article  CAS  Google Scholar 

  35. W. Jolley: Trans. AIME, 1968, vol. 242, pp. 306–14.

    CAS  Google Scholar 

  36. W.C. Leslie, R.J. Soeber, S.G. Babcock, and S.J. Green: Trans. ASM, 1969, vol. 62, pp. 690–710.

    CAS  Google Scholar 

  37. Y.T. Chen, D.G. Atteridge, and W.W. Gerberich: Acta Metall., 1981, vol. 29, pp. 1171–85.

    Article  CAS  Google Scholar 

  38. K. Okazaki: J. Mater. Sci., 1996, vol. 31, pp. 1087–99.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The first author (RR) expresses his gratitude to German Academic Exchange Service (DAAD) for funding his research stay at the Department of Ferrous Metallurgy (IEHK), RWTH Aachen University, where the work was carried out. Further, all authors would like to thank Tata Steel and National Metallurgical Laboratory both in Jamshedpur, India for their contribution toward hot rolling of the material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rana.

Additional information

Manuscript submitted July 18, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rana, R., Singh, S., Bleck, W. et al. Effect of Temperature and Dynamic Loading on the Mechanical Properties of Copper-Alloyed High-Strength Interstitial-Free Steel. Metall Mater Trans A 40, 856–866 (2009). https://doi.org/10.1007/s11661-008-9767-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9767-z

Keywords

Navigation