Metallurgical and Materials Transactions A

, Volume 40, Issue 2, pp 342–353 | Cite as

Cyclic Deformation of Advanced High-Strength Steels: Mechanical Behavior and Microstructural Analysis

  • Timothy B. HilditchEmail author
  • Ilana B. Timokhina
  • Leigh T. Robertson
  • Elena V. Pereloma
  • Peter D. Hodgson


The fatigue properties of multiphase steels are an important consideration in the automotive industry. The different microstructural phases present in these steels can influence the strain life and cyclic stabilized strength of the material due to the way in which these phases accommodate the applied cyclic strain. Fully reversed strain-controlled low-cycle fatigue tests have been used to determine the mechanical fatigue performance of a dual-phase (DP) 590 and transformation-induced plasticity (TRIP) 780 steel, with transmission electron microscopy (TEM) used to examine the deformed microstructures. It is shown that the higher strain life and cyclic stabilized strength of the TRIP steel can be attributed to an increased yield strength. Despite the presence of significant levels of retained austenite in the TRIP steel, both steels exhibited similar cyclic softening behavior at a range of strain amplitudes due to comparable ferrite volume fractions and yielding characteristics. Both steels formed low-energy dislocation structures in the ferrite during cyclic straining.


Ferrite Austenite Martensite Strain Amplitude Trip Steel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the support of the ARC linkage and federation fellows programs.


  1. 1.
    Y. Sakuma, O. Matsumura, H. Takechi: Metall. Trans. A, 1991, vol. 22A, pp. 489–98ADSGoogle Scholar
  2. 2.
    R.G. Davies: Metall. Trans. A, 1978, vol. 9A, pp. 41–52ADSGoogle Scholar
  3. 3.
    M.S. Rashid: in Formable HSLA and Dual-Phase Steels, A.T. Davenport, ed., TMS AIME, Warrendale, PA, 1979, vol. 244, pp. 1–24Google Scholar
  4. 4.
    O. Matsumura, Y. Sakuma, H. Takechi: Scripta Metall., 1987, vol. 21, pp. 1301–06CrossRefGoogle Scholar
  5. 5.
    G.R. Speich, V.A. Demarest: Metall. Trans. A, 1981, vol. 12A, pp. 1419–28ADSGoogle Scholar
  6. 6.
    W.W. Gerberich, P.L Hemmings, M.D. Merz, V.F. Zackay: Trans. ASM, 1968, vol. 61, pp. 834–47Google Scholar
  7. 7.
    I. Tamura: Met. Sci., 1982, vol. 16, pp. 245–53Google Scholar
  8. 8.
    V.F. Bhandarkar, V.F. Zackay, E.R. Parker: Metall. Trans., 1972, vol. 3, pp. 2619–31CrossRefGoogle Scholar
  9. 9.
    J. Johansson, M. Oden: Metall. Trans. A, 2000, vol. 31A, pp. 1557–70CrossRefGoogle Scholar
  10. 10.
    B. Yan and D. Urban: “Characterization of Fatigue and Crash Performance of New Generation High Strength Steels for Automotive Applications (Phase I and Phase II),” AISI/DOE Technology Roadmap Program Report, AISI, Washington, DC, Jan. 2003.Google Scholar
  11. 11.
    T. Yokoi, M. Takahashi, and N. Ikenaga: SAE Technical Paper 2001-01-0042, SAE, Warrendale, PA, 2002Google Scholar
  12. 12.
    A.M. Sherman and R.G. Davies: Int. J. Fatigue, 1981, Jan., pp. 36–40Google Scholar
  13. 13.
    S.R. Mediratta, V. Ramaswamy, and P. Rama Rao: Int. J. Fatigue, 1985, Apr., pp. 101–06Google Scholar
  14. 14.
    H.J. Roven, E. Nes: Acta Metall. Mater., 1991, vol. 39 (8), pp. 1719–33CrossRefGoogle Scholar
  15. 15.
    T. Kruml, J. Polak: Mater. Sci. Eng., 2001, vol. A319–A321, pp. 564–68Google Scholar
  16. 16.
    K. Basu, M. Das, D. Bhattacharjee, P.C. Chakraborti: Mater. Sci. Technol., 2007, vol. 23 (11), pp. 1278–84CrossRefGoogle Scholar
  17. 17.
    K. Sugimoto, M. Kobayashi, S. Yasuki, S. Hashimoto: Mater. Trans., JIM, 1995, vol. 36, pp. 632–38Google Scholar
  18. 18.
    K. Sugimoto, M. Kobayashi, H. Matsushima, S. Hashimoto: Trans. Jpn. Soc. Mech. Eng. A, 1995, vol. 61–581, pp. 80–86Google Scholar
  19. 19.
    I.B. Timokhina, P.D. Hodgson, E.V. Pereloma: Metall. Trans. A, 2004, vol. 35A, pp. 2331–41CrossRefGoogle Scholar
  20. 20.
    B.D. Cullity: Elements of X-Ray Diffraction, Addison-Wesley Publishing Company, Inc., London, 1978, pp. 411–15Google Scholar
  21. 21.
    M. Onink, C.M. Brakman, F.D. Tichelaar, E.J. Mittemeijer, S. van der Zwaag, J.H. Root, N.B. Konyer: Scripta Metall. Mater., 1993, vol. 29 (8), pp. 1011–16CrossRefGoogle Scholar
  22. 22.
    P.B. Hirsch, R.B. Nicholson, A. Howie, D.W. Pashley, M.J. Whelan: Electron Microscopy of Thin Crystals, Butterworth and Co., London, 1965, pp. 51–54Google Scholar
  23. 23.
    P.M. Kelly: Met. Forum, 1982, vol. 5 (1), pp. 13–23Google Scholar
  24. 24.
    F.J. Humphreys, M. Hatherly: Recrystallization and Related Annealing Phenomena, Pergamon, Oxford, United Kingdom, 1996, p. 30Google Scholar
  25. 25.
    I. Alvarez-Armas, M.C. Marinelly, J.A. Malarria, S. Degallaix, A.F. Armas: Int. J. Fatigue, 2007, vol. 29, pp. 758–64CrossRefGoogle Scholar
  26. 26.
    Z.Z. Hu, M.L. Ma, Y.Q. Liu, J.H. Liu: Int. J. Fatigue, 1997, vol. 19, pp. 641–46CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2008

Authors and Affiliations

  • Timothy B. Hilditch
    • 1
    Email author
  • Ilana B. Timokhina
    • 1
  • Leigh T. Robertson
    • 1
  • Elena V. Pereloma
    • 2
  • Peter D. Hodgson
    • 1
  1. 1.Centre for Material and Fibre InnovationDeakin UniversityWaurn PondsAustralia
  2. 2.School of Mechanical, Materials and Mechatronic EngineeringUniversity of WollongongWollongongAustralia

Personalised recommendations