Skip to main content
Log in

Scanning Electron Microscopy/Electron Backscatter Diffraction–Based Observations of Martensite Variant Selection and Slip Plane Activity in Supermartensitic Stainless Steels during Plastic Deformation at Elevated, Ambient, and Subzero Temperatures

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The deformation-induced martensite variant selection in a supermartensitic stainless steel (SMSS) has been examined in the temperature range from −60 °C to 150 °C, using in-situ tensile testing in combination with electron backscatter diffraction (EBSD) analyses in the scanning electron microscope (SEM). In the as-received (i.e., intercritically annealed) condition, the base material contains about 40 vol pct of retained austenite. At each testing temperature, this austenite transforms back to martensite during plastic deformation at a rate which is controlled by the accumulated plastic strain in the material. On the other hand, the applied strain rate and crystallographic orientations of the prior austenite grains do not affect the overall transformation rate. Moreover, the subsequent Schmid factor analysis reveals that the martensite variant selection is independent of the local slip activity within the austenite. Therefore, no new martensite variants, besides those already present in the parent steel, develop during the phase transformation. At the same time, their individual intensities remain approximately constant within each prior austenite grain. This means that the deformation-induced martensite variants nucleate from the same sites as those that are operative in the intercritically-annealed base material. Thus, the observed variant selection is another example of the inherent reversible nature of the martensite transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P.C. Maxwell, A. Goldberg, and J.C. Shyne: Metall. Trans., 1974, vol. 5, pp. 1319–24

    Article  CAS  Google Scholar 

  2. G.B. Olson, and M. Cohen: Metall. Trans. A, 1982, vol. 13A, pp. 1907–14

    ADS  Google Scholar 

  3. P.J. Jacques, J. Landriere, and F. Delannay: Metall. Trans. A, 2001, vol. 32A, pp. 2759–67

    Article  CAS  Google Scholar 

  4. S. Zaefferer, J. Ohlert, and W. Beck: Acta Mater., 2004, vol. 52, pp. 2765–78

    Article  CAS  Google Scholar 

  5. M. Munherjee, O.N. Mohanty, S. Hashimoto, T. Hojo, and K. Sugimoto: ISIJ Int., 2006, vol. 46, pp. 316–24.

    Article  Google Scholar 

  6. J.R. Patel, and M. Cohen: Acta Metall., 1953, vol. 1, pp. 531–38

    Article  CAS  Google Scholar 

  7. P.C. Maxwell, A. Goldberg, and J.C. Shyne: Metall. Trans, 1974, vol. 5, pp. 1305–18

    Article  CAS  Google Scholar 

  8. Y. Higo, F. Lecroisey, and T. Mori: Acta Metall., 1974, vol. 22, pp. 313–23

    Article  CAS  Google Scholar 

  9. G.B. Olson, and M. Cohen: Metall. Trans. A, 1975, vol. 6A, pp. 791–95

    CAS  Google Scholar 

  10. M. Kato, and T. Mori: Acta Metall., 1976, vol. 24, pp. 853–60

    Article  CAS  Google Scholar 

  11. L.E. Murr, K.P. Staudhammer, and S.S. Hecker: Metall. Trans. A, 1982, vol. 13A, pp. 627–35

    ADS  Google Scholar 

  12. N. Gey, B. Petit, and M. Humbert: Metall. Mater. Trans. A, 2006, vol. 36A, pp. 3291–99

    Google Scholar 

  13. S. Chatterjee, and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2007, vol. 23, pp. 1101–04

    Article  CAS  Google Scholar 

  14. H.N. Han, C.G. Lee, D.-W. Suh, and S.-J. Kim: Mater. Sci. Eng. A, 2008, vol. 485, pp. 224–33

  15. J.S. Bowles, and J.K MacKensize: Acta Metall., 1954, vol. 2, pp. 129–37.

    Article  CAS  Google Scholar 

  16. J.K MacKensize, and J.S. Bowles: Acta Metall., 1954, vol. 2, pp. 138–47.

    Article  Google Scholar 

  17. G. Kurdjomov, and G. Sachs: Z. Phys., 1930, vol. 64, pp. 325–43.

    Article  Google Scholar 

  18. W.P. Liu, and H.J. Bunge: Mater. Lett., 1991, vol. 10, pp. 336–43

    Article  CAS  Google Scholar 

  19. A.F. Gourgues-Lorenzon: Int. Mater. Rev., 2007, vol. 52, pp. 65–128

    Article  CAS  Google Scholar 

  20. P. Bate, and B. Hutchinson: Acta Mater., 2000, vol. 48, pp. 3183–92.

    Article  CAS  Google Scholar 

  21. S. Kundu, and H.K.D.H. Bhadeshia: Scripta Mater., 2006, vol. 55, pp. 779–81.

    Article  CAS  Google Scholar 

  22. M. Butrón-Guillén, C. Costa Viana, and J. Jonas: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1755–68

    Article  Google Scholar 

  23. N.J. Wittridge, J.J. Jonas, and J.H. Root: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 889–901

    Article  ADS  CAS  Google Scholar 

  24. M. Karlsen, J. Hjelen, Ø. Grong, G. Rørvik, R. Chiron, U. Schubert, and E. Nilsen: Mater. Sci. Technol., 2008, vol. 24, pp. 64–72

    Article  CAS  Google Scholar 

  25. G. Rørvik, S.M. Hesjevik, and S. Mollan: Stainless Steel World Conf. & Expo, Maastricht, The Netherlands, Nov. 8–10, 2005, paper no. 5089

  26. O.M. Akselsen, G. Rørvik, P.E. Kvaale, and C.v.d. Eijk: Weld. J., 2004, May, pp. 160–67

  27. J. Enerhaug: Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2002, pp. 3–14

  28. E. Folkhard: Welding Metallurgy of Stainless Steels, Springer-Verlag, New York, NY, 1988, pp. 1–29

    Google Scholar 

  29. M. Munherjee, S.B. Singh, and O.N. Mohanty: Mater. Sci. Eng. A, 2006, vol. 20, pp. 319–22

    Google Scholar 

  30. P.D. Bilmes, M. Solari, and C.L. Llorente: Mater. Charact., 2001, vol. 46, pp. 285–96.

    Article  CAS  Google Scholar 

  31. G. Sachs: Z. Verein D. Ing., 1928, vol. 72, p. 743

    Google Scholar 

  32. E. Schmid: Z. Elektrochem., 1931, vol. 37, p. 447.

    CAS  Google Scholar 

  33. G.I. Taylor: J. Inst. Met., 1938, vol. 62, pp. 307–27

  34. E. Schmid, and W. Boas: Kristallplastizität, Springer Verlag, Berlin, 1935, pp. 1–349

    Google Scholar 

  35. H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino: Acta Mater., 2006, vol. 54, pp. 1279–88.

    Article  CAS  Google Scholar 

  36. J.D. Verhoeven: Fundamentals of Physical Metallurgy, John Wiley & Sons, New York, NY, 1975, pp. 493–94.

    Google Scholar 

  37. K. Bhattacharya, S. Conti, G. Zanzotto, and J. Zimmer: Nature, 2004, vol. 428, pp. 55–59.

    Article  PubMed  ADS  CAS  Google Scholar 

  38. H.K.D.H. Bhadeshia: J. Mater. Sci., 1982, vol. 17, pp. 383–86.

    Article  CAS  Google Scholar 

  39. G.B. Olson, and M. Azrin: Metall. Trans. A, 1978, vol. 9A, pp. 713–21.

    ADS  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge StatoilHydro and Norwegian University of Science and Technology (NTNU) for financial support and for providing access to the equipment and materials used in the microstructure examination. The authors are also grateful to Dr. Stephane Dumoulin (SINTEF–Materials and Chemistry) for developing the software used in the Schmid factor analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morten Karlsen.

Additional information

Manuscript submitted April 14, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karlsen, M., Grong, Ø., Søfferud, M. et al. Scanning Electron Microscopy/Electron Backscatter Diffraction–Based Observations of Martensite Variant Selection and Slip Plane Activity in Supermartensitic Stainless Steels during Plastic Deformation at Elevated, Ambient, and Subzero Temperatures. Metall Mater Trans A 40, 310–320 (2009). https://doi.org/10.1007/s11661-008-9729-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9729-5

Keywords

Navigation