Metallurgical and Materials Transactions A

, Volume 40, Issue 2, pp 310–320 | Cite as

Scanning Electron Microscopy/Electron Backscatter Diffraction–Based Observations of Martensite Variant Selection and Slip Plane Activity in Supermartensitic Stainless Steels during Plastic Deformation at Elevated, Ambient, and Subzero Temperatures

  • Morten KarlsenEmail author
  • Øystein Grong
  • Mario Søfferud
  • Jarle Hjelen
  • Gisle Rørvik
  • Remi Chiron


The deformation-induced martensite variant selection in a supermartensitic stainless steel (SMSS) has been examined in the temperature range from −60 °C to 150 °C, using in-situ tensile testing in combination with electron backscatter diffraction (EBSD) analyses in the scanning electron microscope (SEM). In the as-received (i.e., intercritically annealed) condition, the base material contains about 40 vol pct of retained austenite. At each testing temperature, this austenite transforms back to martensite during plastic deformation at a rate which is controlled by the accumulated plastic strain in the material. On the other hand, the applied strain rate and crystallographic orientations of the prior austenite grains do not affect the overall transformation rate. Moreover, the subsequent Schmid factor analysis reveals that the martensite variant selection is independent of the local slip activity within the austenite. Therefore, no new martensite variants, besides those already present in the parent steel, develop during the phase transformation. At the same time, their individual intensities remain approximately constant within each prior austenite grain. This means that the deformation-induced martensite variants nucleate from the same sites as those that are operative in the intercritically-annealed base material. Thus, the observed variant selection is another example of the inherent reversible nature of the martensite transformation.


Austenite Martensite Slip System Prior Austenite Intercritical Annealing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge StatoilHydro and Norwegian University of Science and Technology (NTNU) for financial support and for providing access to the equipment and materials used in the microstructure examination. The authors are also grateful to Dr. Stephane Dumoulin (SINTEF–Materials and Chemistry) for developing the software used in the Schmid factor analysis.


  1. 1.
    P.C. Maxwell, A. Goldberg, and J.C. Shyne: Metall. Trans., 1974, vol. 5, pp. 1319–24CrossRefGoogle Scholar
  2. 2.
    G.B. Olson, and M. Cohen: Metall. Trans. A, 1982, vol. 13A, pp. 1907–14ADSGoogle Scholar
  3. 3.
    P.J. Jacques, J. Landriere, and F. Delannay: Metall. Trans. A, 2001, vol. 32A, pp. 2759–67CrossRefGoogle Scholar
  4. 4.
    S. Zaefferer, J. Ohlert, and W. Beck: Acta Mater., 2004, vol. 52, pp. 2765–78CrossRefGoogle Scholar
  5. 5.
    M. Munherjee, O.N. Mohanty, S. Hashimoto, T. Hojo, and K. Sugimoto: ISIJ Int., 2006, vol. 46, pp. 316–24. CrossRefGoogle Scholar
  6. 6.
    J.R. Patel, and M. Cohen: Acta Metall., 1953, vol. 1, pp. 531–38CrossRefGoogle Scholar
  7. 7.
    P.C. Maxwell, A. Goldberg, and J.C. Shyne: Metall. Trans, 1974, vol. 5, pp. 1305–18CrossRefGoogle Scholar
  8. 8.
    Y. Higo, F. Lecroisey, and T. Mori: Acta Metall., 1974, vol. 22, pp. 313–23CrossRefGoogle Scholar
  9. 9.
    G.B. Olson, and M. Cohen: Metall. Trans. A, 1975, vol. 6A, pp. 791–95Google Scholar
  10. 10.
    M. Kato, and T. Mori: Acta Metall., 1976, vol. 24, pp. 853–60CrossRefGoogle Scholar
  11. 11.
    L.E. Murr, K.P. Staudhammer, and S.S. Hecker: Metall. Trans. A, 1982, vol. 13A, pp. 627–35ADSGoogle Scholar
  12. 12.
    N. Gey, B. Petit, and M. Humbert: Metall. Mater. Trans. A, 2006, vol. 36A, pp. 3291–99Google Scholar
  13. 13.
    S. Chatterjee, and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2007, vol. 23, pp. 1101–04CrossRefGoogle Scholar
  14. 14.
    H.N. Han, C.G. Lee, D.-W. Suh, and S.-J. Kim: Mater. Sci. Eng. A, 2008, vol. 485, pp. 224–33Google Scholar
  15. 15.
    J.S. Bowles, and J.K MacKensize: Acta Metall., 1954, vol. 2, pp. 129–37. CrossRefGoogle Scholar
  16. 16.
    J.K MacKensize, and J.S. Bowles: Acta Metall., 1954, vol. 2, pp. 138–47. CrossRefGoogle Scholar
  17. 17.
    G. Kurdjomov, and G. Sachs: Z. Phys., 1930, vol. 64, pp. 325–43. CrossRefGoogle Scholar
  18. 18.
    W.P. Liu, and H.J. Bunge: Mater. Lett., 1991, vol. 10, pp. 336–43CrossRefGoogle Scholar
  19. 19.
    A.F. Gourgues-Lorenzon: Int. Mater. Rev., 2007, vol. 52, pp. 65–128CrossRefGoogle Scholar
  20. 20.
    P. Bate, and B. Hutchinson: Acta Mater., 2000, vol. 48, pp. 3183–92. CrossRefGoogle Scholar
  21. 21.
    S. Kundu, and H.K.D.H. Bhadeshia: Scripta Mater., 2006, vol. 55, pp. 779–81. CrossRefGoogle Scholar
  22. 22.
    M. Butrón-Guillén, C. Costa Viana, and J. Jonas: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1755–68CrossRefGoogle Scholar
  23. 23.
    N.J. Wittridge, J.J. Jonas, and J.H. Root: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 889–901CrossRefADSGoogle Scholar
  24. 24.
    M. Karlsen, J. Hjelen, Ø. Grong, G. Rørvik, R. Chiron, U. Schubert, and E. Nilsen: Mater. Sci. Technol., 2008, vol. 24, pp. 64–72CrossRefGoogle Scholar
  25. 25.
    G. Rørvik, S.M. Hesjevik, and S. Mollan: Stainless Steel World Conf. & Expo, Maastricht, The Netherlands, Nov. 8–10, 2005, paper no. 5089Google Scholar
  26. 26.
    O.M. Akselsen, G. Rørvik, P.E. Kvaale, and C.v.d. Eijk: Weld. J., 2004, May, pp. 160–67Google Scholar
  27. 27.
    J. Enerhaug: Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2002, pp. 3–14Google Scholar
  28. 28.
    E. Folkhard: Welding Metallurgy of Stainless Steels, Springer-Verlag, New York, NY, 1988, pp. 1–29Google Scholar
  29. 29.
    M. Munherjee, S.B. Singh, and O.N. Mohanty: Mater. Sci. Eng. A, 2006, vol. 20, pp. 319–22Google Scholar
  30. 30.
    P.D. Bilmes, M. Solari, and C.L. Llorente: Mater. Charact., 2001, vol. 46, pp. 285–96. CrossRefGoogle Scholar
  31. 31.
    G. Sachs: Z. Verein D. Ing., 1928, vol. 72, p. 743Google Scholar
  32. 32.
    E. Schmid: Z. Elektrochem., 1931, vol. 37, p. 447. Google Scholar
  33. 33.
    G.I. Taylor: J. Inst. Met., 1938, vol. 62, pp. 307–27Google Scholar
  34. 34.
    E. Schmid, and W. Boas: Kristallplastizität, Springer Verlag, Berlin, 1935, pp. 1–349Google Scholar
  35. 35.
    H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino: Acta Mater., 2006, vol. 54, pp. 1279–88. CrossRefGoogle Scholar
  36. 36.
    J.D. Verhoeven: Fundamentals of Physical Metallurgy, John Wiley & Sons, New York, NY, 1975, pp. 493–94. Google Scholar
  37. 37.
    K. Bhattacharya, S. Conti, G. Zanzotto, and J. Zimmer: Nature, 2004, vol. 428, pp. 55–59. PubMedCrossRefADSGoogle Scholar
  38. 38.
    H.K.D.H. Bhadeshia: J. Mater. Sci., 1982, vol. 17, pp. 383–86. CrossRefGoogle Scholar
  39. 39.
    G.B. Olson, and M. Azrin: Metall. Trans. A, 1978, vol. 9A, pp. 713–21. ADSGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2008

Authors and Affiliations

  • Morten Karlsen
    • 1
    Email author
  • Øystein Grong
    • 1
  • Mario Søfferud
    • 1
    • 2
  • Jarle Hjelen
    • 1
  • Gisle Rørvik
    • 3
  • Remi Chiron
    • 4
  1. 1.Department of Materials Science and EngineeringNorwegian University of Science and TechnologyTrondheimNorway
  2. 2.Det Norske Veritas (DNV)HøvikNorway
  3. 3.StatoilHydro Research CentreTrondheimNorway
  4. 4.CNRS-PMTM LaboratoryVilletaneuseFrance

Personalised recommendations