Metallurgical and Materials Transactions A

, Volume 40, Issue 2, pp 377–385 | Cite as

On the Extension of Processing Time with Increase in Temperature during Transient-Liquid Phase Bonding

  • M.M. Abdelfatah
  • O.A. OjoEmail author


Transient-liquid phase (TLP) bonding of a nickel-based superalloy, IN 738, was performed. Contrary to conventional TLP bonding analytical models, which assume a parabolic relationship between liquid/solid interface migration and holding time, deviation from this law was observed experimentally and by numerical simulation. The deviation, which is caused by reduction in solute concentration gradient below a critical value, is suggested as an alternate phenomenon responsible for anomalous extension of processing time required to produce an eutectic-free joint with increase in bonding temperature. A decrease in the filler gap size and the use of a melting-point depressant (MPD) solute with higher solubility in the base material could reduce the occurrence of the anomalous behavior during a high-temperature TLP joining process.


Bonding Temperature Isothermal Solidification Filler Alloy Deviation Zone Parabolic Relationship 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge the financial support by the URGP of the University of Manitoba.


  1. 1.
    J.M. Vitek: Acta Mater., 2005, vol. 53, pp. 53–67CrossRefGoogle Scholar
  2. 2.
    J.N. DuPont, C.V. Robino, A.R. Marder, M.R. Notis: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2797–806CrossRefGoogle Scholar
  3. 3.
    M.B. Henderson, D. Arrell, M. Larsson, G. Marchant: Sci. Technol. Weld. Join., 2004, vol. 9, pp. 13–21CrossRefGoogle Scholar
  4. 4.
    D.S. Duvall, W.A. Owczarski, D.F. Paulonis: Weld. J., 1974, vol. 53, pp. 203–14Google Scholar
  5. 5.
    O.A. Idowu, N.L. Richards, M.C. Chaturvedi: Mater. Sci. Eng. A, 2005, vol. 397, pp. 98–112CrossRefGoogle Scholar
  6. 6.
    K. Tokoro, N. Wikstrom, O.A. Ojo, M.C. Chaturvedi: Mater. Sci. Eng. A, 2008, vol. 477, pp. 311–18CrossRefGoogle Scholar
  7. 7.
    O.A. Ojo, N.L Richards, M.C. Chaturvedi: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 421–33CrossRefGoogle Scholar
  8. 8.
    P. Villars, A. Prince, H. Okamoto: Handbook of Ternary Alloy Phase Diagrams, ASM INTERNATIONAL, Metals Park, OH, 1993Google Scholar
  9. 9.
    Y. Zhou, W.F. Gale, T.H. North: Int. Mater. Rev., 1995, vol. 40, pp. 181–96Google Scholar
  10. 10.
    I. Tuah-Poku, M. Dollar, T.B. Massalski: Metall. Mater. Trans. A, 1988, vol. 19A, pp. 675–86ADSGoogle Scholar
  11. 11.
    W.D. MacDonald, T.W. Eagar: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 315–25CrossRefGoogle Scholar
  12. 12.
    S. Liu, D.L. Olson, G.P. Martin, G.R. Edwards: Weld. J., 1991, vol. 70, pp. 207s–215sGoogle Scholar
  13. 13.
    Y. Nakao, K. Nishimoto, K. Shinozaki, C.Y. Kang: Trans. Jpn. Weld. Soc., 1989, vol. 20, pp. 60–65Google Scholar
  14. 14.
    W.F. Gale, E.R. Wallach: Mater. Sci Technol., 1991, vol. 7, pp. 1143–48Google Scholar
  15. 15.
    T.C. Illingworth, I.O. Golosnoy: J. Comp. Phys., 2005, vol. 209, pp. 207–25zbMATHCrossRefADSGoogle Scholar
  16. 16.
    M.L. Kuntz: Ph.D. Dissertation, University of Waterloo, Waterloo, 2006Google Scholar
  17. 17.
    A. Sakamoto, C. Fujiwara, T. Hattori, S. Sakai: Weld. J., 1989, vol. 68, pp. 63–71Google Scholar
  18. 18.
    J.E. Ramirez, S. Liu: Weld. J., 1992, vol. 71, pp. 365s–375sGoogle Scholar
  19. 19.
    C.W. Sinclair, G.R. Purdy, J.E. Morral: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1187–92CrossRefGoogle Scholar
  20. 20.
    R. Johnson: Weld. J., 1981, vol. 60, pp. 185s–193sGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2008

Authors and Affiliations

  1. 1.Department of Mechanical and Manufacturing EngineeringUniversity of ManitobaWinnipegCanada

Personalised recommendations