Skip to main content

Advertisement

Log in

Fabrication of Lotus-Type Porous Al-Si Alloys Using the Continuous Casting Technique

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Lotus-type porous Al-Si (4, 8, 12, 14, and 18 wt pct) alloys were fabricated using the continuous casting technique under a hydrogen gas pressure of 0.1 MPa at various transference velocities, and the effects of the silicon content level and transference velocity on the pore morphology and porosity were investigated. Both the porosity and the average pore diameter increase as the silicon content level increases and decrease as the transference velocity increases. In particular, the velocity dependence is obviously exhibited at a silicon content level higher than 12 wt pct. The pore shape is changed from irregular in the higher-dendrite fraction to nearly circular in the lower-dendrite fraction. The porosity and the pore morphology are influenced by the silicon content level and transference velocity. In the model, these results can be understood with the explanation that the pores, which contribute to the increase in porosity, are generated at the eutectic fronts. This indicated that the porosity and the pore size in lotus-type porous Al-Si alloys can be well controlled by varying the silicon content level and the transference velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A.G. Evans, J.W. Hutchinson, M.F. Ashby: Prog. Mater Sci.., 1999, vol. 43, pp. 171–221

    Article  Google Scholar 

  2. J. Banhart: Prog. Mater Sci.., 2001, vol. 46, pp. 559–632

    Article  CAS  Google Scholar 

  3. V.I. Shapovalov: Mater. Sci. Forum, 1996, vols. 215–216, pp. 485–88

    Article  Google Scholar 

  4. S. Yamamura, H. Shiota, K. Murakami, H. Nakajima: Mater. Sci. Eng., A, 2001, vol. 318, pp. 137–43

    Article  Google Scholar 

  5. S.K. Hyun, H. Nakajima: Mater. Trans., 2002, vol. 43, pp. 526–31

    Article  CAS  Google Scholar 

  6. T. Nakahata, H. Nakajima: Mater. Sci. Eng., A, 2004, vol. 384, pp. 373–76

    Google Scholar 

  7. S.K. Hyun, H. Nakajima: Mater. Lett., 2003, vol. 57, pp. 3149–54

    Article  CAS  Google Scholar 

  8. T. Ikeda, T. Aoki, H. Nakajima: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 77–86

    Article  CAS  Google Scholar 

  9. H. Nakajima: Prog. Mater. Sci., 2007, vol. 52, pp. 1091–1173

    Article  CAS  Google Scholar 

  10. S.K. Hyun, K. Murakami, H. Nakajima: Mater. Sci. Eng., A, 2001, vol. 299, pp. 241–48

    Article  Google Scholar 

  11. H. Nakajima: Mater. Trans., 2001, vol. 42, pp. 1827–29

    Article  CAS  Google Scholar 

  12. S.K. Hyun, J.S. Park, M. Tane, and H. Nakajima: in Porous Metals and Metal Foaming Technology, H. Nakajima and N. Kanetake, eds., Japan Institute of Metals, Sendai, Japan, 2006, pp. 211–14

  13. J.S. Park, S.K. Hyun, S. Suzuki, H. Nakajima: Acta Mater., 2007, vol. 55, pp. 5646–54

    Article  CAS  Google Scholar 

  14. W.R. Opie, N.J. Grant: Trans. AIME, 1950, vol. 188, pp. 1237–41

    CAS  Google Scholar 

  15. Y. Shinada, Y. Ueda, S. Nishi: J. Jpn. Inst. Light Met., 1980, vol. 30, pp. 384–89

    CAS  Google Scholar 

  16. R.C. Atwood, S. Sridhar, W. Zhang, P.D. Lee: Acta Mater., 2000, vol. 48, pp. 405–17

    Article  CAS  Google Scholar 

  17. P.D. Lee, J.D. Hunt: Acta Mater., 2001, vol. 49, pp. 1383–98

    Article  CAS  Google Scholar 

  18. Y. Shinada, Y. Ueda, S. Nishi: J. Jpn. Inst. Light Met., 1983, vol. 33, pp. 508–17

    CAS  Google Scholar 

  19. R.C. Atwood, P.D. Lee: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 209–21

    Article  CAS  Google Scholar 

  20. A.M. Samuel, F.H. Samuel: J. Mater. Sci., 1992, vol. 27, pp. 6533–63

    Article  CAS  ADS  Google Scholar 

  21. A.K. Dahle, J. Taylor, D.A. Graham: Alum. Trans., 2000, vol. 3, pp. 17–29

    CAS  Google Scholar 

  22. H. Iwahori, K. Yonekura, Y. Yamamoto, M. Nakamura: AFS Trans., 1990, vol. 98, pp. 167–73

    CAS  Google Scholar 

  23. M. Ichimura, Y. Sasajima, M. Imabayashi: Mater. Trans., 1992, vol. 33, pp. 449–53

    Google Scholar 

  24. F.D. Manchester: Phase Diagrams of Binary Hydrogen Alloys, ASM INTERNATIONAL, Materials Park, OH, 2000, pp. 4 and 197

  25. J.L. Murray, A.J. McAlister: Bull. Alloy Phase Diagrams, 1984, vol. 5, pp. 74–84

    Article  CAS  Google Scholar 

  26. P.D. Lee, J.D. Hunt: Acta Mater., 1997, vol. 45, pp. 4155–69

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present work was supported by a Grant-in-Aid for the Creation of Innovations through Business-Academic-Public Sector Cooperation of the Ministry of Education, Culture, Sports, Science, and Technology of Japan. This work was also supported by the Global Century COE Program (Project: Center of Excellence for Advanced Structural and Functional Materials Design) from the Ministry of Education, Sports, Culture, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.S. Park.

Additional information

Manuscript submitted August 21, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J., Hyun, S., Suzuki, S. et al. Fabrication of Lotus-Type Porous Al-Si Alloys Using the Continuous Casting Technique. Metall Mater Trans A 40, 406–414 (2009). https://doi.org/10.1007/s11661-008-9710-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9710-3

Keywords

Navigation