Skip to main content
Log in

Comparison of Crevice Corrosion of Fe-Based Amorphous Metal and Crystalline Ni-Cr-Mo Alloy

  • Symposium: Iron Based Amorphous Metals: An Important Family of High-Performance Corrosion-Resistant Materials
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The crevice corrosion behaviors of an Fe-based bulk metallic glass alloy (SAM1651) and a Ni-Cr-Mo crystalline alloy (C-22) were studied in 4M NaCl solution at 100 °C with cyclic potentiodynamic polarization and constant-potential tests. The corrosion damage morphologies, corrosion products, and the compositions of corroded surfaces of these two alloys were studied with optical three-dimensional reconstruction, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Auger electron spectroscopy (AES). It was found that the Fe-based bulk metallic glass (amorphous alloy) SAM1651 had a more positive breakdown potential and repassivation potential than crystalline alloy C-22 in cyclic potentiodynamic polarization tests and required a more positive oxidizing potential to initiate crevice corrosion in constant-potential tests. Once crevice corrosion initiated, the corrosion propagation of C-22 was more localized near the crevice border compared to SAM1651, and SAM1651 repassivated more readily than C-22. The EDS results indicated that the corrosion products of both alloys contained a high amount of O and were enriched in Mo and Cr. The AES results indicated that a Cr-rich oxide passive film was formed on the surfaces of both alloys, and both alloys corroded congruently in the crevice corrosion damage areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. FEI is a trademark of FEI Company, Hillsboro, OR.

  2. PHILIPS is a trademark of Philips Electronic Instruments Corp., Mahwah, NJ.

References

  1. A. Inoue: Acta Mater., 2000, vol. 48, pp. 279–306

    Article  CAS  Google Scholar 

  2. A. Inoue, B. Shen, and A. Takeuchi: Mater. Sci. Forum, 2007, vols. 539–543, pp. 92–99

    Article  Google Scholar 

  3. V. Ponnambalam, S.J. Poon, and G.J. Shiflet: J. Mater. Res., 2004, vol. 19, pp. 1320–23

    Article  ADS  CAS  Google Scholar 

  4. V. Ponnambalam, S.J. Poon, and G.J. Shiflet: J. Mater. Res., 2004, vol. 19, pp. 3046–52

    Article  ADS  CAS  Google Scholar 

  5. A. Inoue, B. Shen, and A. Takeuchi: Mater. Sci. Eng. A, 2006, vol. 441, pp. 18–25

    Article  CAS  Google Scholar 

  6. J.R. Scully and A. Lucente: ASM Handbook, ASM International, Materials Park, OH, 2005, vol. 13B, pp. 476–89

  7. J. Scully, A. Gebert, and J.H. Payer: J. Mater. Res., 2007, vol. 22, pp. 302–13

    Article  ADS  CAS  Google Scholar 

  8. K. Asami, S.-J. Pang, T. Zhang, and A. Inoue: J. Electrochem. Soc., 2002, vol. 149, pp. B366–B369

    Article  CAS  Google Scholar 

  9. S.J. Pang, T. Zhang, K. Asami, and A. Inoue: Corros. Sci., 2002, vol. 44, pp. 1847–56

    Article  CAS  Google Scholar 

  10. S.J. Pang, T. Zhang, K. Asami, and A. Inoue: Acta Mater., 2002, vol. 50, pp. 489–97

    Article  CAS  Google Scholar 

  11. J. Jayaraj, K.B. Kim, H.S. Ahn, and E. Fleury: Mater. Sci. Eng. A, 2007, vols. 449–451, pp. 517–20

    Google Scholar 

  12. J. Farmer, J. Haslam, S.D. Day, T. Lian, C.K. Saw, P.D. Hailey, J. Choi, N. Yang, C.A. Blue, W.H. Peter, J.H. Payer, and D.J. Branagan: ECS Trans., 2007, vol. 3 (31), pp. 485–96

  13. J.C. Farmer, D.J. Branagan, C.A. Blue, J.D.K. Rivard, L.F. Aprigliano, N. Yang, J.H. Perepezko, and M.B. Beardsley: Paper presented at the 2005 ASME Pressure Vessels and Piping Division Conf., Denver, CO, July 17–21, 2005

  14. J.C. Farmer, J.J. Haslam, S.D. Day, T. Lian, C.K. Saw, P.D. Hailey, J.-S. Choi, R.B. Rebak, N. Yang, J.H. Payer, J.H. Perepezko, K. Hildal, E.J. Lavernia, L. Ajdelsztajn, D.J. Branagan, E.J. Buffa, and L.F. Aprigliano: J. Mater. Res., 2007, vol. 22, pp. 2297–2311

    Article  ADS  CAS  Google Scholar 

  15. R.B. Rebak, L.F. Aprigliano, S.D. Day, and J.C. Farmer: Materials Research Society Symposium Proc. 985, Materials Research Society, Pittsburgh, PA, 2007, pp. 321–26

    Google Scholar 

  16. G.O. Ilevbare: Corrosion, 2006, vol. 62, pp. 340–56

    Article  CAS  Google Scholar 

  17. K.J. Evans, A. Yilmaz, S.D. Day, L. Wong, J.C. Estill, and R. Rebak: JOM, 2005, vol. 57, pp. 56–61

    Article  ADS  CAS  Google Scholar 

  18. B.A. Kehler, G.O. Ilevbare, and J.R. Scully: Corrosion, 2001, vol. 57, pp. 1042–65

    CAS  Google Scholar 

  19. P. Pharkya, X. Shan, and J.H. Payer: ECS Trans., 2007, vol. 3 (31), pp. 473–84

    Article  CAS  Google Scholar 

  20. D. Zagidulin, P. Jakupi, B. Sherar, J.J. Noel, and D.W. Shoesmith: ECS Trans., 2007, vol. 3 (31), pp. 419–30

    Article  CAS  Google Scholar 

  21. P. Jakupi, D. Zagidulin, J. Noël, and D.W. Shoesmith: ECS Trans., 2007, vol. 3 (31), pp. 259–71

    Article  CAS  Google Scholar 

  22. M. Miyagusuku and T.M. Devine: Corrosion/2007, NACE International, Houston, TX, 2007, paper no. 07586

  23. A.S. Agarwal, U. Landau, X. Shan, and J.H. Payer: ECS Trans., 2007, vol. 3 (31), pp. 459–71

    Article  CAS  Google Scholar 

  24. X. Shan and J.H. Payer: Corrosion/2007, NACE International, Houston TX, 2007, paper no. 07582

  25. X. Shan, and J.H. Payer: ECS Trans., 2007, vol. 3 (31), pp. 333–41

    Article  CAS  Google Scholar 

  26. Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, 2005, vol. 03.02, G48-03

  27. R. Rebak: Corrosion/2005, NACE International, Houston, TX, 2005, paper no. 05610

  28. K.G. Mon, G.M. Gordon, and R. Rebak: Paper presented at the 12th Int. Conf. on Environmental Degradation of Materials in Nuclear Power System-Water Reactors, Salt Lake City, UT, August 14–18, 2005

  29. M.G. Fontana, and N.D. Green: Corrosion Engineering, McGraw-Hill Book Co., New York, NY, 1967, pp. 39–48

    Google Scholar 

  30. J.W. Oldfield, and W.H. Sutton: Br. Corros. J., 1978, vol. 13 (1), pp. 13–22

    CAS  Google Scholar 

  31. E. McCafferty: Corrosion, 1997, vol. 53 (10), pp. 755–61

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Science and Technology Program of the Office of the Chief Scientist (OCS), Office of Civilian Radioactive Waste Management (OCRWM), and the United States Department of Energy (DOE) for support. The work was performed under the Corrosion and Materials Performance Cooperative, DOE Cooperative Agreement No. DE-FC28-04RW12252. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Department of Energy. The authors also acknowledge the support of the Defense Science Office (DSO) of the Defense Advanced Research Projects Agency (DARPA). Approved for Public Release, Distribution Unlimited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.H. Payer.

Additional information

This article is based on a presentation given in the symposium entitled “Iron-Based Amorphous Metals: An Important Family of High-Performance Corrosion-Resistant Materials,” which occurred during the MSandT meeting, September 16–20, 2007, in Detroit, Michigan, under the auspices of The American Ceramics Society (ACerS), The Association for Iron and Steel Technology (AIST), ASM International, and TMS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shan, X., Ha, H. & Payer, J. Comparison of Crevice Corrosion of Fe-Based Amorphous Metal and Crystalline Ni-Cr-Mo Alloy. Metall Mater Trans A 40, 1324–1333 (2009). https://doi.org/10.1007/s11661-008-9697-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9697-9

Keywords

Navigation