Skip to main content

NanoceramicMetal Matrix Composites by In-Situ Pyrolysis of Organic Precursors in a Liquid Melt


We show the feasibility of introducing a dispersion of a refractory ceramic phase into metals by stirring a powder of an organic polymer into a magnesium melt and having it convert into a ceramic within the melt by in-situ pyrolysis of the polymer. The pyrolysis is a highly reactive process, accompanied by the evolution of hydrogen, which disperses the ceramic phase into nanoscale constituents. In the present experiments, a polysilazane-based precursor, which is known to yield an amorphous ceramic constituted from silicon, carbon, and nitrogen, was used. Five weight percent of the precursor (which has a nominal ceramic yield of 75 to 85 wt pct) produced a twofold increase in the room-temperature yield strength and reduced the steady-state strain rate at 450 °C by one to two orders of magnitude, relative to pure magnesium. This polymer-based in-situ process (PIP) for processing metal-matrix composites (MMCs) is likely to have great generality, because many different kinds of organic precursors, for producing oxide, carbides, nitrides, and borides, are commercially available. Also, the process would permit the addition of large volume fractions of the ceramic, enabling the nanostructural design, and production of MMCs with a wide range of mechanical properties, meant especially for high-temperature applications. An important and noteworthy feature of the present process, which distinguishes it from other methods, is that all the constituents of the ceramic phase are built into the organic molecules of the precursor (e.g., polysilazanes contain silicon, carbon, and nitrogen); therefore, a reaction between the polymer and the host metal is not required to produce the dispersion of the refractory phase.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. CERASET is a trademark of Kion Corporation, Charlotte, NC.


  1. T.M. Pollock, A.S. Argon: Acta Metall. Mater., 1992, vol. 40 (1), pp. 1–30

    Article  CAS  Google Scholar 

  2. B.A. Wilcox, A.H. Clauer: Trans. TMS, 1966, vol. 236 (4), pp. 570–80

    CAS  Google Scholar 

  3. D.L. McDaniels: Metall. Trans. A, 1985, vol. 16A, pp. 1105–15

    Google Scholar 

  4. A Mortensen: Int. Mater. Rev., 1992, vol. 37 (3), pp. 101–28

    CAS  Google Scholar 

  5. L. An, R. Riedel, C. Konetschny, H.J. Kleebe, R. Raj: J. Am. Ceram. Soc., 1998, vol. 81 (5), pp. 1349–52

    Article  Google Scholar 

  6. L. Pederiva, G.D. Sorarù, J. Latournerie, R. Raj: J. Am. Ceram. Soc., 2002, vol. 85 (9), pp. 2181–87

    Article  Google Scholar 

  7. E. Kroke, Y.L. Li, C. Konetschny, E. Lecomte, C. Fasel, R. Riedle: Mater. Sci. Eng. Rep., 2003, vol. 26 (4–6), pp. 97–199

    Google Scholar 

  8. M.J. Koczak and K.S. Kumar: U.S. Patent, 4,808,372, 1989

  9. I. Gotman, M.J. Koczak: Mater. Sci. Eng. A, 1994, vol. 187 (2), pp. 189–99

    Article  Google Scholar 

  10. M.J. Koczak, M.K. Premkumar: JOM–J. Min. Met. Mater. Soc., 1993, vol. 45 (1), pp. 44–48

    CAS  Google Scholar 

  11. M.K. Surappa, P.K. Rohatgi: Met. Technol., 1978, vol. 5, pp. 358–61

    CAS  Google Scholar 

  12. M.K. Surappa, P.K. Rohatgi: J. Mater. Sci., 1981, vol. 16, pp. 983–93

    Article  CAS  Google Scholar 

  13. M.K. Surappa and Sudarshan: Indian Patent 00192/CHE/2007, pending

  14. H.-Y. Ryu, R. Raj: J. Am. Ceram. Soc., 2007, vol. 90 (1), pp. 295–97

    Article  CAS  Google Scholar 

  15. N. Janakiraman, T. Hoche, J. Grins, S. Esmaeilzadeh: J. Mater. Chem., 2006, vol. 16, pp. 3844–53

    Article  CAS  Google Scholar 

  16. S.R. Shah, R. Raj: Acta Mater., 2002, vol. 50 (16), pp. 4093–4103

    Article  CAS  Google Scholar 

  17. A. Saha, D.L. Williamson, R. Raj: J. Am. Ceram. Soc., 2006, vol. 89 (7), pp. 2188–95

    CAS  Google Scholar 

Download references


It is a pleasure to acknowledge help from Professor A.H. Chokshi and his students with the creep experiments. The Ceramics Program of the Division of Materials Research at the National Science Foundation supports RR’s basic research on the structure and properties of free-standing polymer-derived ceramics, under Grant No. DMR-0502446.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Rishi Raj.

Additional information

Manuscript submitted January 9, 2008.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sudarshan, Surappa, M., Ahn, D. et al. NanoceramicMetal Matrix Composites by In-Situ Pyrolysis of Organic Precursors in a Liquid Melt. Metall Mater Trans A 39, 3291–3297 (2008).

Download citation

  • Published:

  • Issue Date:

  • DOI:


  • Pyrolysis
  • Metal Matrix Composite
  • Polymer Precursor
  • Pure Magnesium
  • Organic Precursor