Grain Boundary Microstructural Control through Thermomechanical Processing in a Titanium-Modified Austenitic Stainless Steel

Abstract

The present study discusses the grain boundary microstructural control in a 15Cr-15Ni-2.2Mo-Ti modified austenitic stainless steel (commonly known as alloy D9) through a one-step thermomechanical treatment. The experimental methodology adopted in this investigation was based on the strain annealing approach in which a small amount of strain (5 to 15 pct) was imparted on the solution-annealed (SA) sample. The cold-deformed samples were subsequently annealed at various temperatures (1173 to 1273 K) for different time periods (0.5 to 2 hours). It was observed that annealing after 5 pct deformation induces anomalous grain growth with a moderate increase in number fraction of coincidence site lattice (CSL) boundaries. However, a prestrain of 10 to 15 pct followed by annealing at 1273 K for 0.5 to 2 hours was found to be a suitable thermomechanical processing schedule to increase the number fraction of CSL boundaries (particularly Σ3 and its variants) significantly. Further, the well-connected network of random grain boundaries present in the SA specimen was substantially disrupted in these processing conditions due to the incorporation of Σ3 and its variants. The preceding results were discussed with reference to strain-induced grain growth vis-à-vis strain-induced boundary migration (SIBM) following deformation and annealing.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    T. Watanabe: Res. Mech., 1984, vol. 11, pp. 47–84

    CAS  Google Scholar 

  2. 2.

    G. Palumbo, P.J. King, K.T. Aust, U. Erb, and P.C. Lichtenberger: Scripta Metall. Mater., 1991, vol. 25, pp. 1775–80

    Article  CAS  Google Scholar 

  3. 3.

    T. Watanabe: Mater. Sci. Eng. A, 1993, vol. 166, pp. 11–28

    Article  Google Scholar 

  4. 4.

    U. Krupp, P.E.-G. Wagenhuber, W.M. Kane, and C.J. McMahon Jr.: Mater. Sci. Technol., 2005, vol. 21, pp. 1247–54

    Article  CAS  Google Scholar 

  5. 5.

    T. Watanabe, S. Tsurekawa, S. Kobayashi, and S. Yamaura: Mater. Sci. Eng. A, 2005, vols. 410–411, pp. 140–47

    Google Scholar 

  6. 6.

    P. Lin, G. Palumbo, U. Erb, and K.T. Aust: Scripta Metall. Mater., 1995, vol. 33, pp. 1387–92

    Article  CAS  Google Scholar 

  7. 7.

    E.M. Lehockey, G. Palumbo, and P. Lin: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 3069–79

    Article  CAS  Google Scholar 

  8. 8.

    D.H. Warrington, and M. Boon: Acta Metall. Mater., 1975, vol. 23, pp. 599–607

    Article  Google Scholar 

  9. 9.

    G. Owen, and V. Randle: Scripta Mater., 2006, vol. 55, pp. 959–62

    Article  CAS  Google Scholar 

  10. 10.

    A.J. Schwartz, M. Kumar, and W.E. King: MRS Symposium Proceedings, Materials Research Society, Pittsburgh, PA, 2000, vol. 586, pp. 3–14

  11. 11.

    V. Randle: Acta Mater., 2004, vol. 52, pp. 4067–81

    Article  CAS  Google Scholar 

  12. 12.

    M. Michiuchi, H. Kokawa, Z.J. Wang, Y.S. Sato, and K. Sakai: Acta Mater., 2006, vol. 54, pp. 5179–84

    Article  CAS  Google Scholar 

  13. 13.

    M. Shimada, H. Kokawa, Z.J. Wang, Y.S. Sato, and I. Karibe: Acta Mater., 2002, vol. 50, pp. 2331–41

    Article  CAS  Google Scholar 

  14. 14.

    M. Kronberg, and F.H. Wilson: Trans. AIME, 1949, vol. 185, pp. 501–17

    Google Scholar 

  15. 15.

    D.G. Brandon: Acta Metall., 1966, vol. 14, pp. 1479–84

    Article  CAS  Google Scholar 

  16. 16.

    V. Randle, and G. Owen: Acta Mater., 2006, vol. 54, pp. 1777–83

    Article  CAS  Google Scholar 

  17. 17.

    V. Randle: Phil. Mag. A, 1993, vol. 67, pp. 1301–13

    Article  CAS  Google Scholar 

  18. 18.

    V. Randle: Metall. Trans. A, 1990, vol. 21A, pp. 2215–21

    CAS  Google Scholar 

  19. 19.

    D.J. Srolovitz, G.S. Grest, and M.P. Anderson: Acta Metall., 1985, vol. 33, pp. 2233–47

    Article  CAS  Google Scholar 

  20. 20.

    P. Pumphrey, and H. Gleiter: Phil. Mag., 1971, vol. 35, pp. 365–70

    Google Scholar 

  21. 21.

    C.S. Pande, M.A. Imam, and B.B. Rath: Metall. Trans. A, 1990, vol. 21A, pp. 2891–96

    CAS  Google Scholar 

  22. 22.

    B.M. Guyot, and N.L. Richards: Mater. Sci. Eng. A, 2005, vol. 395, pp. 87–97

    Article  Google Scholar 

  23. 23.

    M. Kumar, A.J. Schwartz, and W.E. King: Acta Mater., 2002, vol. 50, pp. 2599–612

    Article  CAS  Google Scholar 

  24. 24.

    L.C. Lim, and R. Raj: Acta Metall. 1984, vol. 32, 1177–81

    Article  CAS  Google Scholar 

  25. 25.

    V. Randle: Acta Mater., 1999, vol. 47, pp. 4187–96

    Article  CAS  Google Scholar 

  26. 26.

    V. Randle: Scripta Mater., 2001, vol. 44, pp. 2789–94

    Article  CAS  Google Scholar 

  27. 27.

    D.M. Saylor, B.S. El-Dasher, and B.L. Adams: Metall. Mater. Trans., 2004, vol. 35A, pp. 1981–89

    Article  CAS  Google Scholar 

  28. 28.

    T. Watanabe: Text. Microstr., 1993, vol. 20, pp. 195–216

    Article  Google Scholar 

  29. 29.

    S. Tsurekawa, S. Nakamichi, and T. Watanabe: Acta Mater., 2006, vol. 54, pp. 3617–26

    Article  CAS  Google Scholar 

  30. 30.

    V. Randle: The Role of the Coincidence Site Lattice in Grain Boundary Engineering, The Institute of Materials, London, 1996, p. 46

    Google Scholar 

  31. 31.

    S.L. Lee, and N.L. Richards: Mater. Sci. Eng. A, 2005, vol. 405, pp. 74–85

    Article  Google Scholar 

  32. 32.

    Q. Li, B.M. Guyot, and N.L. Richards: Mater. Sci. Eng. A, 2007, vol. 458, pp. 58–66

    Article  Google Scholar 

  33. 33.

    L. Tan, and T.R. Allen: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1921–25

    Article  CAS  Google Scholar 

  34. 34.

    P. Davies, and V. Randle: Mater. Sci. Technol., 2001, vol. 17, pp. 615–26

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sumantra Mandal.

Additional information

Manuscript submitted February 9, 2008.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mandal, S., Sivaprasad, P., Raj, B. et al. Grain Boundary Microstructural Control through Thermomechanical Processing in a Titanium-Modified Austenitic Stainless Steel. Metall Mater Trans A 39, 3298–3307 (2008). https://doi.org/10.1007/s11661-008-9667-2

Download citation

Keywords

  • Austenitic Stainless Steel
  • Coincidence Site Lattice
  • Coincidence Site Lattice Boundary
  • Grain Boundary Character Distribution
  • Grain Boundary Engineering