Advertisement

Metallurgical and Materials Transactions A

, Volume 39, Issue 12, pp 2799–2803 | Cite as

Analytical Electron Microscopy Study of Boron-Rich Grain Boundary Microconstituent in Directionally Solidified RENE 80 Superalloy

  • O.A. OjoEmail author
  • H.R. Zhang
Communication

Abstract

Analytical transmission electron microscopy study of intergranular regions in directionally solidified (DS) RENE 80 superalloy was performed. In addition to the generally reported M3B2-type boride particles that form in the alloy during ingot solidification, considerable presence of a different type of boride particles, M5B3, which has not been generally reported in the alloy, was observed. Extensive formation of these particles along the grain boundaries in the DS alloy is pertinent to high-temperature performance of the material.

Keywords

Boride Boron Atom Electron Energy Loss Spectroscopy Directionally Solidify Electron Diffraction Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

The authors thank NSERC of Canada for financial support.

References

  1. 1.
    Q.Z. Chen, N. Jones, D.M. Knowles: Acta Mater., 2002, vol. 50, pp. 1095–112CrossRefGoogle Scholar
  2. 2.
    D.M. Shah, A. Cetel: in Superalloys 2000, T.M. Pollock, R.D. Kissinger, R.R. Bowman, K.A. Green, M. Mclean, S. Olson, J.J. Schirra, eds., TMS, Warrendale, PA, 2000, pp. 295–304Google Scholar
  3. 3.
    R.T. Holt, W. Wallace: Int. Met. Rev., 1976, vol. 21, pp. 1–24Google Scholar
  4. 4.
    L. Xiao, D.L. Chen, M.C. Chaturvedi: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3477–87CrossRefGoogle Scholar
  5. 5.
    T.G. Garosshen, T.D. Tillman, G.P. McCarthy: Metall. Trans. A, 1987, vol. 18A, pp. 69–77Google Scholar
  6. 6.
    A.K. Jena, M.C. Chaturvedi: J. Mater. Sci., 1984, vol. 19, pp. 3121–39CrossRefGoogle Scholar
  7. 7.
    F. Tancret, H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2003, vol. 19, pp. 291–95CrossRefGoogle Scholar
  8. 8.
    O.A. Ojo, N.L. Richards, M.C. Chaturvedi: Scripta Mater., 2004, vol. 51, pp. 683–88CrossRefGoogle Scholar
  9. 9.
    N. Yukawa, Y. Murata, and T. Noda: Superalloys 1984, TMS, Warrendale, PA, 2000, pp. 83–92Google Scholar
  10. 10.
    F. Zupanic: Mater. Technol., 2002, vol. 36, pp. 361–65Google Scholar
  11. 11.
    S.M. Seo, I.S. Kim, J.H. Lee, C.Y. Jo, H. Miyahara, K. Ogi: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 883–93CrossRefGoogle Scholar
  12. 12.
    J. Garcia Barriocanal, P. Perez, G. Garces, P. Adeva: Intermetallics, 2007, vol. 15, pp. 1096–104CrossRefGoogle Scholar
  13. 13.
    Z. Ryan, S. Wang, Y. Zheng: Scripta Mater., 1996, vol. 34, pp. 163–68. CrossRefGoogle Scholar
  14. 14.
    H.J. Goldschmidt: J. Iron Steel Inst., 1971, vol. 209, pp. 910–11Google Scholar
  15. 15.
    X. Huang, M.C. Chaturvedi, N.L. Richards, J. Jackman: Acta Mater., 1997, vol. 45, pp. 3095–107CrossRefGoogle Scholar
  16. 16.
    X.L. He, Y.Y. Chu, J.J. Jonas: Acta Metall., 1989, vol. 37, pp. 2905–16CrossRefGoogle Scholar
  17. 17.
    L. Karlsson, H. Norden: Acta Metall., 1988, vol. 36, pp. 35–48CrossRefGoogle Scholar
  18. 18.
    M. Kurban, U. Erb, K.T. Aust: Scripta Mater., 2006, vol. 54, pp. 1053–58CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2008

Authors and Affiliations

  1. 1.Department of Mechanical and Manufacturing EngineeringUniversity of ManitobaWinnipegCanada

Personalised recommendations