Skip to main content
Log in

X-Ray Diffraction Profile Analysis for Characterizing Isothermal Aging Behavior of M250 Grade Maraging Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript


X-ray diffraction (XRD) studies were carried out to characterize aging behavior of M250 grade maraging steel samples subjected to isothermal aging at 755 K for varying durations of 0.25, 1, 3, 10, 40, 70, and 100 hours. Earlier studies had shown typical features of precipitation hardening, wherein the hardness increased to a peak value due to precipitation of intermetallics and decreased upon further aging (overaging) due to reversion of martensite to austenite. Intermetallic precipitates, while coherent, are expected to increase the microstrain in the matrix. Hence, an attempt has been made in the present study to understand the microstructural changes in these samples using XRD line profile analysis. The anisotropic broadening with diffraction angle observed in the simple Williamson–Hall (WH) plot has been addressed using the modified WH (mWH) approach, which takes into account the contrast caused by dislocations on line profiles, leading to new scaling factors in the WH plot. The normalized mean square strain and crystallite size estimated from mWH have been used to infer early precipitation and to characterize aging behavior. The normalized mean square strain has been used to determine the Avrami exponent in the Johnson–Mehl–Avrami (JMA) equation, which deals with the kinetics of precipitation. The Avrami exponent thus determined has matched well with values found by other methods, as reported in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others


  1. G.P. Miller, W.I. Mitchell: J. Iron Steel Inst., 1965, vol. 203, pp. 899–904

    CAS  Google Scholar 

  2. D.T. Peters, C.R. Cupp: Trans. TMS-AIME, 1966, vol. 236, pp. 1420–29

    CAS  Google Scholar 

  3. V.K. Vasudevan, S.J. Kim, C.M. Wayman: Metall. Trans. A, 1990, vol. 21A, pp. 2655–68

    CAS  Google Scholar 

  4. Z. Guo, W. Sha, D. Li: Mater. Sci. Eng. A, 2004, vol. 373, pp. 10–20

    Article  Google Scholar 

  5. S. Floreen and R.F. Decker: Source Book on Maraging Steels, R.F. Decker, ed., ASM, Metals Park, OH, 1979, pp. 20–32

  6. U.K. Viswanathan, G.K. Dey, M.K. Asundi: Metall. Trans. A, 1993, vol. 24A, pp. 2429–42

    CAS  Google Scholar 

  7. W. Sha, A. Cerezo, G.D.W. Smith: Metall. Trans. A, 1993, vol. 24A, pp. 1221–32

    CAS  Google Scholar 

  8. W. Sha, A. Cerezo, G.D.W. Smith: Metall. Trans. A, 1993, vol. 24A, pp. 1233–39

    CAS  Google Scholar 

  9. W. Sha, A. Cerezo, G.D.W. Smith: Metall. Trans. A, 1993, vol. 24A, pp. 1241–49

    CAS  Google Scholar 

  10. W. Sha, A. Cerezo, G.D.W. Smith: Metall. Trans. A, 1993, vol. 24A, pp. 1251–56

    CAS  Google Scholar 

  11. U.K. Viswanathan, T.R.G. Kutty, C. Ganguly: Metall. Trans. A, 1993, vol. 24A, pp. 2653–56

    CAS  Google Scholar 

  12. W. Sha: Scripta Mater., 2000, vol. 42, pp. 549–53

    Article  CAS  Google Scholar 

  13. G.K. Williamson, W.H. Hall: Acta Metall., 1953, vol. 1, pp. 22–31

    Article  CAS  Google Scholar 

  14. B.E. Warren, B.L. Averbach: J. Appl. Phys., 1952, vol. 23, p. 497

    Article  CAS  Google Scholar 

  15. T. Ungár, A. Borbély: Appl. Phys. Lett., 1996, vol. 69 (21), pp. 3173–75

    Article  Google Scholar 

  16. T. Ungár, S. Ott, P.G. Sanders, A. Borbély, J.R. Weertman: Acta Mater., 1998, vol. 46, pp. 3693–99

    Article  Google Scholar 

  17. T. Ungár, J. Gubicza, G. Ribárik, A. Borbély: J. Appl. Cryst., 2001, vol. 34, pp. 298–310

    Article  Google Scholar 

  18. S.N. Dey, P. Chatterjee, S.P. Sen Gupta: Acta Mater., 2003, vol. 51, pp. 4669–77

    Article  CAS  Google Scholar 

  19. M. Krasnowski, A. Grabias, T. Kulik: J. Alloys Compd., 2006, vol. 424, pp. 119–27

    Article  CAS  Google Scholar 

  20. T. Ungár, G. Tichy: Phys. Status Solidi A, 1999, vol. 171, pp. 425–34

    Article  Google Scholar 

  21. T. Ungár, I. Dragomir, Á. Révész, A. Borbély: J. Appl. Cryst., 1999, vol. 32, pp. 992–1002

    Article  Google Scholar 

  22. K.V. Rajkumar, S. Vaidyanathan, A. Kumar, T. Jayakumar, B. Raj, K.K. Ray: J. Magn. Magn. Mater., 2007, vol. 312, pp. 359–65

    Article  CAS  Google Scholar 

  23. J.A. Rayne, B.S. Chandrasekhar: Physic. Rev., 1961, vol. 122, pp. 1714–16

    Article  CAS  Google Scholar 

  24. P. Scardi, M. Leoni: J. Appl. Cryst., 1999, vol. 32, pp. 671–82

    Article  CAS  Google Scholar 

  25. R.L. Patterson, C.M. Wayman: Acta Metall., 1966, vol. 14, pp. 347–69

    Article  CAS  Google Scholar 

  26. E. Schafler, M. Zehetbauer T. Ungár: Mater. Sci. Eng. A, 2001, vols. 319–321, pp. 220–23

    Google Scholar 

  27. Y. He, K. Yang, W. Sha: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2273–87

    Article  CAS  Google Scholar 

  28. K.V. Rajkumar, R. Rajaraman, A. Kumar, G. Amarendra, T. Jayakumar, C.S. Sundar, B. Raj, and K.K. Ray: unpublished research

  29. O. Novelo-Peralta, G. González, and G.A. Lara-Rodríguez: Mater. Charact., 2007, doi:10.1016/j.matchar.2007.06.012

Download references


We thank Dr. P.R. Vasudeva Rao, Director, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research (Kalpakkam), for his encouragement and support.

Author information

Authors and Affiliations


Corresponding author

Correspondence to S. Mahadevan.

Additional information

Manuscript submitted October 24, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahadevan, S., Jayakumar, T., Rao, B. et al. X-Ray Diffraction Profile Analysis for Characterizing Isothermal Aging Behavior of M250 Grade Maraging Steel. Metall Mater Trans A 39, 1978–1984 (2008).

Download citation

  • Published:

  • Issue Date:

  • DOI: