Skip to main content
Log in

Microsegregation during Solidification of an Al-Cu Binary Alloy at Largely Different Cooling Rates (0.01 to 20,000 K/s): Modeling and Experimental Study

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Microsegregation in the Al 4 wt pct Cu alloy was investigated experimentally in a large range of cooling rates from 0.01 to 20,000 K/s using different solidification techniques. The microstructure was modeled using two-dimensional (2-D) pseudo-front tracking (PFT) developed by Jacot and co-workers. The experimentally determined amount of nonequilibrium eutectics increases with the cooling rate in the range 0.01 to 3 K/s and then decreases in the range 20 to 20,000 K/s. The fraction of eutectic calculated from the 2-D PFT model shows not only the same tendency, but also agrees quantitatively very well with the experiments over the range of cooling rates. It can also be explained qualitatively how the observed in terms of coarsening of the secondary dendrite arms and the back diffusion in the way both depend on the local solidification time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Rappaz, W.J. Boettinger: Acta Mater., 1999, vol. 47 (11), pp. 3205–19

    Article  CAS  Google Scholar 

  2. A.B. Michael, M.B. Bever: Trans. AIME J. Met., 1954, vol. 202, pp. 47–56

    Google Scholar 

  3. M.A. Taha, N.A. El-Mhallawy, R.M. Hamouda: Mater. Des., 2002, vol. 23, pp. 195–200

    CAS  Google Scholar 

  4. J.A. Sarreal, G.J. Abbaschian: Metall. Trans. A, 1986, vol. 17A, pp. 2063–73

    CAS  Google Scholar 

  5. I.I. Novikov, V.S. Zolotarevskii: Dendritnaja Likvatsiya v Splavakh (Dendritic Solidification in Alloys), Nauka, Moskow, 1966

    Google Scholar 

  6. D. Eskin, Q. Du, D. Ruvalcaba, L. Katgerman: Mater. Sci. Eng., 2005, vol. A405, pp. 1–10

    CAS  Google Scholar 

  7. Q. Du, D.G. Eskin, A. Jacot: Acta Mater., 2007, vol. 55 (5), pp. 1523–32

    Article  CAS  Google Scholar 

  8. V.R. Voller: J. Cryst. Growth, 2001, vol. 226, pp. 562–68

    Article  CAS  Google Scholar 

  9. V.R. Voller, C. Beckermann: Metall. Mater. Trans. A, 1999, vol. 30A, 2183–89

    Article  CAS  Google Scholar 

  10. S. Kobayashi: J. Cryst. Growth, 1988, vol. 88, p. 87

    Article  CAS  Google Scholar 

  11. C.Y. Wang, C. Beckermann: Mater. Sci. Eng., 1993, vol. A171, pp. 199–211

    CAS  Google Scholar 

  12. I. Ohnaka: Trans. ISIJ, 1986, vol. 26, p. 1045

    CAS  Google Scholar 

  13. L. Nastac, D.M. Stefanescu: Metall. Trans. A, 1993, vol. 24A, p. 2107

    CAS  Google Scholar 

  14. A. Jacot, M. Rappaz: Acta Mater., 2002, vol. 50, pp. 1909–26

    Article  CAS  Google Scholar 

  15. Q. Du, A. Jacot: Acta Mater., 2005, vol. 53, pp. 3479–93

    Article  CAS  Google Scholar 

  16. CALCOSOFT, User Manual, Calcom ESI and Swiss Federal Institute of Technology, Lausanne, Switzerland, 2004.

  17. J. Alkemper, S. Sous, C. Stöcker, L. Ratke: J. Cryst. Growth, 1998, vol. 191, pp. 252–60

    Article  CAS  Google Scholar 

  18. S. Sous, L. Ratke: Z. Metallkd., 2005, vol. 96 (4), pp. 362–69

    CAS  Google Scholar 

  19. J. Alkemper, L. Ratke, and S. Sous: Proc. 4th Decennial Conf. on Solidification Processing, J. Beech and H. Jones, eds., Sheffield University, Sheffield, United Kingdom, 1997, pp. 463–67

  20. J. Fricke: J. Non-Cryst. Solids, 1992, vol. 145, pp. 1–259

    Article  Google Scholar 

  21. P.H. Tewari, A.J. Hunt, J.G. Lieber, K. Lufftus, and J. Fricke: Aerogels, Proc. Physics 6, Springer-Verlag, Berlin, 1986

  22. S. Steinbach, L. Ratke: Scripta Mater., 2004, vol. 50, pp. 1135–38

    Article  CAS  Google Scholar 

  23. S. Steinbach, L. Ratke: Mater. Sci. Eng., 2005, vols. A 413–A414, pp. 200–04

    Google Scholar 

  24. D.M. Herlach, R.F. Cochrane, I. Egry, H.J. Fecht: Int. Mater. Rev., 1993, vol. 38 (6), pp. 273–347

    CAS  Google Scholar 

  25. F. Gillessen: Forschungsbericht DFVLR, DLR-FB, Köln, 1989, pp. 89–32

    Google Scholar 

  26. S. Reutzel, T. Volkmann, J. Gao, J. Strohmenger, D.M. Herlach: in Solidification and Crystallization, D.M. Herlach, ed., Wiley-VCH, Weinheim, Germany, 2004, pp. 239–49

    Chapter  Google Scholar 

  27. P.S. Grant, B. Cantor, L. Katgerman: Acta Metall. Mater., 1993, vol. 41, pp. 3097–3108

    Article  CAS  Google Scholar 

  28. AnalySIS©, Soft Imaging System GmbH, 1986–2002

  29. R. Mehrabian, M.C. Flemings: Metall. Trans., 1970, vol. 1, pp. 455–64

    CAS  Google Scholar 

  30. C. Beckermann: Int. Mater. Rev., 2002, vol. 47 (5), pp. 243–61

    Article  CAS  Google Scholar 

  31. L. Ratke and S. Steinbach: Solidification Processing, Proc. 5th Decennial Int. Conf. on Solidification Processing, Howard Jones, ed., University of Sheffield, Sheffield, United Kingdom, 2007, pp. 14–17

  32. H.-J. Diepers, C. Beckermann, I. Steinbach: Acta Mater., 1999, vol. 47, pp. 3663–78

    Article  CAS  Google Scholar 

  33. M. Hainke: Ph.D. Thesis, University of Erlangen–Nuremberg, Germany, 2004

  34. S. Steinbach and L. Ratke: Proc. 18th Eur. Sounding Rocket & Balloon Programme Symp., W. Herfs and A. Wilson, eds., Visby, Sweden, 2007, ESA-SP 647, Special Publications No 647, ESA Publications Division, Noordwijk, The Netherlands, pp. 373–78

Download references

Acknowledgments

This work was performed within the framework of the research program of Virtual Institute for VIrtual MATerials design (VIVIMAT). The authors thank Dr. M. Kolbe, for the fruitful discussion about the definition of cooling rate in the drop tube facility and for helping in the microstructure analysis with SEM, and Mr. F. Schmidt-Hohagen, whose temperature measurements in the molds gave the background for definition of the cooling rate by the mold casting experiments. The authors are grateful to Dr. A. Jacot for numerous and fruitful explanations regarding the PFT model and its functioning as implemented in a CALCOSOFT code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galina Kasperovich.

Additional information

Manuscript submitted April 19, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasperovich, G., Volkmann, T., Ratke, L. et al. Microsegregation during Solidification of an Al-Cu Binary Alloy at Largely Different Cooling Rates (0.01 to 20,000 K/s): Modeling and Experimental Study. Metall Mater Trans A 39, 1183–1191 (2008). https://doi.org/10.1007/s11661-008-9505-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9505-6

Keywords

Navigation