Skip to main content
Log in

Fatigue Isotropy in Cross-Rolled, Hardened Isotropic-Quality Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Deformation and forging operations often introduce microstructural orientation and, therewith, mechanical anisotropy to steel. Flattened manganese sulfide inclusions are held responsible for a great part of fatigue anisotropy. Isotropic-quality (IQ) steel maintains the mechanical isotropy of the material, even after a deformation operation. Isotropic material generally contains little S and, therewith, few manganese sulfides. Further, the IQ steels used in this investigation were Ca treated. The Ca treatment improves the shape stability of the sulfides, even during a hot-working deformation. Two commercial materials were compared for their fatigue response, a standard medium-carbon steel with 0.04 wt pct S and a low-sulfur variant that underwent IQ treatment. The two batches were cross-rolled to plates with a deformation ratio of 4.5, leading to in-plane isotropy. Tension-compression fatigue testing was performed in longitudinal and short transversal directions relative to the rolling plane. The results showed strong anisotropy of the fatigue behavior for the standard material. The performance in the short transverse direction, with the principal stress perpendicular to the flattened inclusions, was inferior. The IQ material with nearly spherical inclusions was almost perfectly isotropic, with only slightly worse fatigue response in the short transverse direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. C. Kaynak, A. Ankara, T.J. Baker: Mater. Sci. Technol., 1996, vol. 12 (7), pp. 557–62

    CAS  Google Scholar 

  2. W.C. Leslie: ISS Trans., 1983, vol. 2, pp. 1–24

    CAS  Google Scholar 

  3. I.C. Mayes, T.J. Baker: Mater. Sci. Technol., 1986, vol. 2, pp. 133–39

    CAS  Google Scholar 

  4. H. Ravenshorst and M. Hejazifar: ER-502904, Volvo Powertrain Corporation, Göteborg, Sweden, unpublished research, 2000

  5. J. Wilhelmsson: Volvo Powertrain Corporation, Göteborg, Sweden, unpublished research, 1999

  6. P. Ölund: Adv. Mater. Processes, 2006, 164 (8), pp. 15–16

    Google Scholar 

  7. Buderus Edelstahl: Structural Steels—Stock List—Properties and Applications, Buderus Edelstahl, Wetzlar, Germany, 2007, pp. 1–11

  8. P. Ölund: The IQ Process—The Ovako Isotropic Quality Process, Hällefors Tryckeri, Hofors, Sweden, 2006, pp. 1–7

  9. M. Kage, H. Nisitani: Bull. Jpn. Soc. Mech. Eng., 1977, vol. 20, pp. 1353–58

    CAS  Google Scholar 

  10. T. Skamletz, W. Schepp: J. Mech. Work. Technol., 1979, vol. 3, pp. 47–62

    Article  CAS  Google Scholar 

  11. F. Pellicani, F. Villette, J. Dubois: Scaninject IV: Fourth Int. Conf. on Injection Metallurgy, MEFOS, Luleå, Sweden, 1986, pp. 29:1–29:16

    Google Scholar 

  12. A. El-Ghazaly: Neue Hutte, 1992, vol. 37, pp. 399–404

    CAS  Google Scholar 

  13. M. Wahlster, H. Heimbach, K. Forch: Stahl Eisen., 1969, vol. 89, pp. 1037–44

    CAS  Google Scholar 

  14. A.D. Wilson: Proc. Symp. Held in Conjunction with the 1988 World Materials Congr., ASM INTERNATIONAL, Materials Park, OH, 1988, pp. 21–34.

  15. A.D. Wilson: Fractography and Materials Science, Williamsburg, VA, 1981, pp. 166–86

  16. S.K. Putatunda, A.H. Christ, E.J. Cabadas, M.G. Shapona, K.N. Tatteff, M.B. Rao: J. Mater. Manuf., 1994, vol. 103, pp. 153–65

    Google Scholar 

  17. Y. Murakami: Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions, Elsevier, Amsterdam, 2002, pp. 1–369

    Google Scholar 

  18. D. Brooksbank, K.W. Andrews: J. Iron Steel Inst., 1972, vol. 210, pp. 246–55

    CAS  Google Scholar 

  19. E. Doege: IFUM Do 190/49, Hannover, Germany, 1987

  20. T.V. Venkatasubramanian, T.J. Baker: Met. Sci., 1982, vol. 16, pp. 543–54

    Article  CAS  Google Scholar 

  21. T.J. Baker, K.B. Gove, J.A. Charles: Met. Technol., 1976, vol. 3, pp. 183–93

    Google Scholar 

  22. R. Kiessling: in Encyclopedia of Materials: Science and Technology. Bernhard Ilschner, ed., Elsevier Science, Ltd., Oxford, United Kingdom, 2001, pp. 6278–83

    Google Scholar 

  23. G. Härkegård: Eng. Fract. Mech., 1974, vol. 6, pp. 795–803

    Article  Google Scholar 

  24. C. Temmel, B. Karlsson, N.-G. Ingesten: Metall. Mater. Trans. A, 2006. vol. 37A, pp. 2995–3007

    Article  CAS  Google Scholar 

  25. S.B. Hosseini, C. Temmel, B. Karlsson, N.-G. Ingesten: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 982–89

    Article  CAS  Google Scholar 

  26. R. Kiessling, N. Lange: Non-Metallic Inclusions in Steel (Parts I-IV), 2nd ed., The Metals Society, London, 1978, pp. 114–27

    Google Scholar 

  27. A.S. Rao, V.V.S. Prasad, R.G. Baligidad, V.R. Rao, D.S. Sarma: Trans. Indian Inst. Met., 1999, vol. 52, pp. 139–46

    CAS  Google Scholar 

  28. ContinuouslyCast Steel for Bars, Tube Blanks and Forgings, Volvo Corporate Standard STD 1006, 2006, vol. 8.

  29. C.-H. Leung, L.H. Van Vlack: Metall. Trans. A, 1981, vol. 12A, pp. 987–91

    Google Scholar 

  30. R.C. Weast: Physical Constants of Inorganic Compounds: CRC Handbook of Chemistry and Physics, 68th ed., CRC Press, Inc., Boca Raton, FL, 1988, pp. B-68 and B-106

  31. A.D. Wilson: Characterization of Inclusions in Plate Steels and Their Influence on Mechanical Properties. Inclusions and Their Influence on Material Behavior, ASM INTERNATIONAL, Materials Park, OH, 1989, pp. 21–33

    Google Scholar 

  32. P. Juvonen: Effects of Non-Metallic Inclusions on Fatigue Properties of Calcium-Treated Steels, Helsinki University of Technology, Helsinki, Finland, 2004, pp. 1–102

    Google Scholar 

  33. A.D. Wilson: Met. Prog., 1982, vol. 121, pp. 41–46

    CAS  Google Scholar 

  34. K. Dalaei, C. Temmel, B. Karlsson, and N.-G. Ingesten: Volvo Powertrain Corporation, Göteborg, Sweden, unpublished research, 2007

  35. P. Diersen, D. Günther, A. Walter, F. Hoffmann, E. Brinksmeier, P. Mayr: Härterei-Technische Mitteilungen, 1999, vol. 54, pp. 79–85

    CAS  Google Scholar 

  36. AnnualBook of ASTM Standards, ASTM International, West Conshohocken, PA, 2001, pp. 434–37.

  37. AnnualBook of ASTM Standards, ASTM International, West Conshohocken, PA, 2003, pp. 1–8.

  38. G.F. Vander Voort: Bearing Steels: Into 21st Century, ASTM STP 1327, J. Joseph, J. C. Hoo, and W.B. Green, eds., ASTM International, West Conshohocken, PA, 1998, pp. 13–26

  39. W.J. Dixon, A.M. Mood: J. Am. Statist. Assoc., 1948, vol. 43, pp. 108–26

    Article  Google Scholar 

  40. J. Höijer: Licentiate Thesis, Chalmers University of Technology, Göteborg, Sweden, 2003.

  41. H. Nisitani, M. Kage: Bull. Jpn. Soc. Mech. Eng., 1980, vol. 23, pp. 799–806

    CAS  Google Scholar 

  42. S. Suresh: Fatigue of Materials, 2nd ed., Cambridge University Press, Cambridge, MA, 2004, p. 679

    Google Scholar 

  43. A.J. McEvily: Metal Failures—Mechanisms, Analysis, Prevention, John Wiley & Sons, Inc., New York, NY, 2002, pp. 198–200

    Google Scholar 

Download references

Acknowledgments

This research was supported by Grant No. 2004-02727 of the National Swedish VINNOVA Program Board for Automotive Research and by Volvo Powertrain Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Temmel.

Additional information

Manuscript submitted June 26, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Temmel, C., Karlsson, B. & Ingesten, NG. Fatigue Isotropy in Cross-Rolled, Hardened Isotropic-Quality Steel. Metall Mater Trans A 39, 1132–1144 (2008). https://doi.org/10.1007/s11661-008-9467-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9467-8

Keywords

Navigation