Metallurgical and Materials Transactions A

, Volume 39, Issue 4, pp 897–907 | Cite as

Evolution of Austenite Recrystallization and Grain Growth Using Laser Ultrasonics

  • S. Sarkar
  • A. Moreau
  • M. Militzer
  • W.J. Poole


Laser ultrasonics is a noncontacting technique with which the attenuation of ultrasonic signals can be measured and related to the grain size of the investigated material. In the present article, a laser-ultrasonic grain-size measurement technique previously developed for various C-Mn and microalloyed steels has been extended to examine austenite recrystallization and subsequent grain growth following hot deformation. The ultrasonic measurements were conducted on a low-carbon (0.05 wt pct) steel that contains Mn, Mo, and Nb as the three main alloying/microalloying elements. The grain-size data measured by ultrasonic experiments were analyzed to quantify the effect of deformation conditions on the evolution of recrystallized grain size and subsequent grain growth. A significant effect of deformation temperature, applied strain, and initial grain size on the grain-size evolution was observed, while strain rate had a negligible effect. Phenomenological modeling approaches were employed to describe the recrystallized grain-size and grain-growth behavior of the present steel.


Austenite Deformation Temperature Microalloyed Steel Solute Drag Nucleus Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The financial support received from the Natural Science and Engineering Research Council of Canada (NSERC) and Dofasco, Inc. is acknowledged with gratitude. The authors thank Dofasco for providing the material for this research. The authors also acknowledge Dr. Silvio E. Kruger for helpful discussions related to laser-ultrasonic experimentation.


  1. 1.
    R.I.L. Guthrie, J.J. Jonas: ASM Handbook: Properties and Selection: Irons, Steels and High Performance Alloys, 10th ed., vol. 1, ASM INTERNATIONAL, Materials Park, OH, 1990, pp. 115–16Google Scholar
  2. 2.
    A.K. Giumelli, M. Militzer, E.B. Hawbolt: ISIJ Int., 1999, vol. 39, pp. 271–80CrossRefGoogle Scholar
  3. 3.
    M. Militzer, A.K. Giumelli, E.B. Hawbolt, T.R. Meadowcroft: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3399–3409CrossRefGoogle Scholar
  4. 4.
    D.Q. Bai, S. Yue, W.P. Sun, J.J. Jonas: Metall. Mater. Trans. A, 1993, vol. 24A, pp. 2151–59Google Scholar
  5. 5.
    E.J. Palmiere, C.I. Garcia, A.J. DeArdo: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 277–86CrossRefGoogle Scholar
  6. 6.
    O. Kwon, A.J. DeArdo: Acta Metall. Mater., 1991, vol. 39, pp. 529–38CrossRefGoogle Scholar
  7. 7.
    C. Choquet, P. Fabrègue, J. Guisti, B. Chamont, J.N. Pezant, Pezant and F. Blanchet: Int. Symp. on Mathematical Modeling of Hot Rolling of Steel, S. Yue, ed., MetSoc-CIM, Montreal, QC, Canada, 1990, pp. 34–43Google Scholar
  8. 8.
    A. Quispe, S.F. Medina, P. Valles: ISIJ Int., 1997, vol. 37, pp. 783–88CrossRefGoogle Scholar
  9. 9.
    B. Dutta, E.J. Palmiere: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1237–47CrossRefGoogle Scholar
  10. 10.
    K.B. Kang, O. Kwon, W.B. Lee, C.G. Park: Scripta Mater., 1997, vol. 36, pp. 1303–08CrossRefGoogle Scholar
  11. 11.
    S.F. Medina, J.E. Mancila: ISIJ Int., 1996, vol. 36, pp. 1077–83CrossRefGoogle Scholar
  12. 12.
    M. Militzer, E.B. Hawbolt, T.R. Meadowcroft: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1247–89CrossRefGoogle Scholar
  13. 13.
    R. Millsop: Hardenability Concepts with Applications to Steel, D.V. Doane, J.S. Kirkaldy, eds., Metall. Soc. of AIME, Warrendale, PA, 1977, pp. 316–33Google Scholar
  14. 14.
    M. Dubois, M. Militzer, A. Moreau, J.F. Bussière: Scripta Mater., 2000, vol. 42, pp. 867–74CrossRefGoogle Scholar
  15. 15.
    E.P. Papadakis: J. Acoust. Soc. Am., 1965, vol. 37, pp. 703–10CrossRefGoogle Scholar
  16. 16.
    E.L. Ulmgren, M. Ericsson, D. Artymowicz, B. Hutchinson: Mater. Sci. Forum, 2004, vols. 467–470, pp. 1353–62Google Scholar
  17. 17.
    C.M. Sayers, R.L. Smith: Ultrasonics, 1982, vol. 20, pp. 201–05CrossRefGoogle Scholar
  18. 18.
    S.E. Kruger, G. Lamouche, J.-P. Monchalin, R. Kolarik II, G. Jeskey, and M. Choquet: Iron Steel Technol., 2005, vol. 2, pp. 25–31.Google Scholar
  19. 19.
    M. Dubois, M. Militzer, A. Moreau, J.F. Bussière: Grain Growth in Polycrystalline Materials III, H. Weiland, B.L. Adams, A.D. Rollett, eds., TMS, Warrendale, PA, 1998, pp. 593–98Google Scholar
  20. 20.
    S.E. Kruger, A. Moreau, M. Militzer, T. Biggs: Mater. Sci. Forum, 2003, vols. 426–432, pp. 483–88CrossRefGoogle Scholar
  21. 21.
    D. Lévesque, A. Moreau, M. Lord, M. Dubois, J.P. Monchalin, C. Padioleau, and J.F. Bussière: in Intl. Symp. on Advanced Sensors for Metals Processing, B.W. Brusey, J.F. Bussière, M. Dubois, and A. Moreau, eds., MetSoc-CIM, Montreal, QC, Canada, 1999, pp. 53–65.Google Scholar
  22. 22.
    A. Smith, S.E. Kruger, J. Sietsma, S. Van der Zwaag: ISIJ Int., 2006, vol. 46, pp. 1223–32CrossRefGoogle Scholar
  23. 23.
    A. Moreau, D. Lévesque, M. Lord, M. Dubois, J.-P. Monchalin, C. Padioleau, J.F. Bussière: Ultrasonics, 2002, vol. 40, pp. 1047–56CrossRefGoogle Scholar
  24. 24.
    B. Hutchinson, B. Moss, A. Smith, A. Astill, C. Scruby, G. Engberg, and J. Björklund: Ironmaking and Steelmaking, 2002, vol. 29, pp. 77–80CrossRefGoogle Scholar
  25. 25.
    A. Moreau, C. Bescond, S. Bolognini, M. Lord, S. Kruger, and C.-S. Man: Proc. World Conf. on Nondestructive Testing 2004, CINDE, Hamilton, ON, Canada, 2004, pp. 3–10Google Scholar
  26. 26.
    S. Sarkar, M. Militzer, W.J. Poole, and A. Moreau: Int. Symp. on Advanced Steels, J.A. Szpunar, H. Li, eds., MetSoc-CIM, Montreal, QC, Canada, 2006, pp. 119–30Google Scholar
  27. 27.
    F.E. Stanke, G.S. Kino: J. Acoust. Soc. Am., 1984, vol. 75, pp. 665–81CrossRefGoogle Scholar
  28. 28.
    B.W. Krakauer, A. Moreau: Int. Symp. on Advanced Sensors for Metals Processing, MetSoc-CIM, Montreal, QC, Canada, 1999, pp. 41–52Google Scholar
  29. 29.
    S. Bolognini, A. Moreau: J. Appl. Phys., 2003, vol. 94, pp. 3771–80CrossRefGoogle Scholar
  30. 30.
    Y. Pan, C. Rossignol, B. Audoin: J. Acoust. Soc. Am., 2004, vol. 115, pp. 1537–45CrossRefGoogle Scholar
  31. 31.
    D. Clorennec, D. Royer, H. Walaszek: Ultrasonics, 2002, vol. 40, pp. 783–89CrossRefGoogle Scholar
  32. 32.
    S. Sarkar, M. Militzer, W.J. Poole, and F. Fazeli: in Materials Science and Technology (MS&T) 2007, Automotive: Advanced High-Strength and Other Specialty Sheet Steel Products for the Automotive Industry, MS&T’07, Detroit, MI, 2007, pp. 61–72Google Scholar
  33. 33.
    C.M. Sellars: Int. Symp. on Mathematical Modeling of Hot Rolling of Steel, S. Yue, ed., MetSoc-CIM, Montreal, QC, Canada, 1990, pp. 1–18Google Scholar
  34. 34.
    J.E. Burke, D. Turnbull: Prog. Met. Phys., 1952, vol. 3, pp. 220–44CrossRefGoogle Scholar
  35. 35.
    F.J. Humphreys, M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Pergamon Press Ltd., Oxford, United Kingdom., 1996, pp. 281–325Google Scholar
  36. 36.
    D. Liu, F. Fazeli, M. Militzer, and W.J. Poole: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 894–909CrossRefGoogle Scholar
  37. 37.
    C.M. Sellars, Q. Zhu: Mater. Sci. Eng. A, 2000, vol. 280A, pp. 1–7Google Scholar

Copyright information


Authors and Affiliations

  1. 1.The Centre for Metallurgical Process EngineeringUniversity of British ColumbiaVancouverCanada
  2. 2.Industrial Materials InstituteNational Research Council of CanadaBouchervilleCanada

Personalised recommendations