Prediction of Elastic Modulus + Anisotropy Using X-Ray and Electron Backscattered Diffraction Texture Quantification and Ultrasonic (Electromagnetic Acoustic Transducer) Measurements in Aluminum Sheets

Abstract

Crystallographic texture is generally measured using X-ray diffraction, performed off-line using small samples determining near-surface texture only; electron backscattered diffraction (EBSD) can also be used, but only samples relatively small areas. Ultrasonic methods determine elastic property anisotropy and texture, via orientation distribution coefficients (ODCs), and while there is substantial literature comparing ultrasonically determined properties with X-ray or neutron diffraction texture, there is little discussion about texture inhomogeneity (place to place in a sheet or through thickness) and sampling volume effects (X-ray compared to EBSD) on the accuracy of the correlations. In this article, the crystallographic texture of nominally pure aluminum and commercial aluminum alloy sheets has been determined by X-ray diffraction and EBSD and used to calculate the elastic anisotropy, which is then compared to ultrasonic electromagnetic acoustic transducer (EMAT) velocity anisotropy taking into account through-thickness texture variations. Significant and consistent spatial variability in texture occurs in the aluminum sheet samples (sheet edge to center and through thickness). Predictions of elastic anisotropy based on surface texture determination, as characterized by X-ray diffraction or surface EBSD, gave poor correlations with EMAT velocity anisotropy when the sample contained significant through thickness texture variations; however, accounting for this using multiple EBSD scans through thickness gave good correlations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Notes

  1. 1.

    JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. 1.

    R.W. Herztberg: Deformation and Fracture Mechanics of Engineering Material, 4th ed., John Wiley & Sons, New York, NY, 1996

    Google Scholar 

  2. 2.

    A. Moreau, D. Leevesque, M. Lord, M. Dubois, J.-P. Monchalin, C. Padioleau, J.F. Bussieere: Ultrasonics, 2002, vol. 40, pp. 1047–56

    Article  CAS  Google Scholar 

  3. 3.

    R.B. Thompson, S.S. Lee, J.F. Smith: J. Acoust. Soc. Am., 1986, vol. 80, pp. 921–31

    Article  Google Scholar 

  4. 4.

    K. Kawashima: J. Acoust. Soc. Am., 1990, vol. 87, pp. 681–90

    Article  Google Scholar 

  5. 5.

    K. Kawashima, T. Hyoguchi, T. Akagi: J. Nondestruct. Eval., 1993, vol. 12 (1), pp. 71–77

    Article  Google Scholar 

  6. 6.

    M. Hirao, H. Ogi: Ultrasonics, 1997, vol. 35, pp. 413–21

    Article  CAS  Google Scholar 

  7. 7.

    S.R. Agnew, J.R. Weertman: Mater. Sci. Eng., 1998, vol. A242, pp. 174–80

    CAS  Google Scholar 

  8. 8.

    C.M. Sayers, G.G. Proudfoot: Mech. Phys. Solids, 1986, vol. 34 (6), pp. 579–92

    Article  Google Scholar 

  9. 9.

    D. Artymowicz, B. Hutchinson, M. Nogues: Mater. Sci. Technol., 2002, vol. 18, pp. 1142–46

    Article  CAS  Google Scholar 

  10. 10.

    H.J. Bunge: Texture Analysis in Materials Science, Butterworth and Co., London, 1982, p. 321

    Google Scholar 

  11. 11.

    J.F. Nye: Physical Properties of Crystals, Oxford University Press, London, 1957

    Google Scholar 

  12. 12.

    J. Lewandowski: NDT&E Int., 1999, vol. 32, pp. 383–96

    Article  Google Scholar 

  13. 13.

    R.B. Thompson, S.S. Lee, J.F. Smith: Ultrasonics, 1987, vol. 25, p. 133

    Article  Google Scholar 

  14. 14.

    G.E. Dieter: Mechanical Metallurgy, 4th ed., McGraw-Hill Book Co., New York, NY, 1988

    Google Scholar 

  15. 15.

    Labosoft: http://www.labosoft.com.pl/index.htm, viewed June 28, 2007

  16. 16.

    R.J. Roe: J. Appl. Phys., 1966, vol. 37 (5), pp. 2069–72

    Article  CAS  Google Scholar 

  17. 17.

    R.J. Roe: J. Appl. Phys., 1965, vol. 36 (6), pp. 2024–31

    Article  CAS  Google Scholar 

  18. 18.

    C.M. Sayers: J. Phys. D, 1982, vol. 15, pp. 2157–67

    Article  CAS  Google Scholar 

  19. 19.

    M.D.G. Potter, S. Dixon, J.P. Morrison, A.S. Sulaiman: Ultrasonics, 2006, vol. 44, pp. e813–e817

    Article  Google Scholar 

  20. 20.

    R.B. Thompson, J.F. Smith, S.S. Lee, G.C. Johnson: Metall. Trans. A, 1989, vol. 20, pp. 2431–47

    Article  Google Scholar 

  21. 21.

    S.H. Tang, S. Wu, S.T. Tu, M. Kobayashi: Theor. Appl. Fract. Mech., 2006, vol. 45, pp. 128–38

    Article  CAS  Google Scholar 

  22. 22.

    V. Clark Jr., R.C. Reno, R.B. Thompson, J.F. Smith, G.V. Blessing, R.J. Fields, P.P. Delsanto, R.B. Mignogna: Ultrasonics, 1988, vol. 26, pp. 189–97

    Article  CAS  Google Scholar 

  23. 23.

    R.B. Thompson, S.S. Lee, Y. Li, C.M. Sayers: Mater. Sci. Eng., 1994, vol. A177, pp. 261–67

    Google Scholar 

  24. 24.

    M.P. Miller, T.J. Turner: Int. J. Plasticity, 2001, vol. 17, pp. 783–805

    Article  CAS  Google Scholar 

  25. 25.

    O.V. Mishin, B. Bay, G. Winther, D. Juul Jensen: Acta Mater., 2004, vol. 52, pp. 5761–70

    Article  CAS  Google Scholar 

  26. 26.

    S.E. Schoenfeld, R.J. Asaro: Int. J. Mech. Sci., 1996, vol. 38, pp. 661–83

    Article  Google Scholar 

  27. 27.

    R.E. Zinkham, C. Baker: Eng. Fract. Mech., 1969, vol. 1, pp. 495–98

    Article  Google Scholar 

  28. 28.

    M. Hirao, N. Hara, H. Fukuoka: Ultrasonics, 1987, vol. 25, pp. 107–11

    Article  Google Scholar 

  29. 29.

    X.-H. Zeng, T. Ericsson: Acta Mater. 1996, vol. 44, pp. 1801–12

    Article  CAS  Google Scholar 

  30. 30.

    M.D.G. Potter, S Dixon, C.L. Davis: Meas. Sci. Technol., 2004, vol. 15, pp. 1303–08

    Article  CAS  Google Scholar 

  31. 31.

    R.J. Dewhurst, C. Edwards, A.D.W. McKie, S.B. Palmer: Appl. Phys. Lett., 1987, vol. 51, pp. 1066–68

    Article  Google Scholar 

  32. 32.

    J. Morrison: University of Warwick, Coventry, United Kingdom, unpublished research, 2007

  33. 33.

    R.K. Ray, J. Jonas: Int. Mater. Rev., 1990, vol. 35, pp. 1–35

    Google Scholar 

  34. 34.

    D.S. Hoddinott, G.J. Davies: J. Inst. Met., 1969, vol. 97, pp. 155–59

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the United Kingdom Engineering and Physical Sciences Research Council for its support of this research. The experimental work carried out by Dr. Ahmad Sulaiman, Tracey Holmes, and Jim Morrison is gratefully acknowledged. The assistance of Dr. Jerry Lord, National Physical Laboratory, in measuring the mechanically determined elastic modulus values is very gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to C.L. Davis.

Additional information

Manuscript submitted August 16, 2007.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Davis, C., Strangwood, M., Potter, M. et al. Prediction of Elastic Modulus + Anisotropy Using X-Ray and Electron Backscattered Diffraction Texture Quantification and Ultrasonic (Electromagnetic Acoustic Transducer) Measurements in Aluminum Sheets. Metall Mater Trans A 39, 679–687 (2008). https://doi.org/10.1007/s11661-007-9439-4

Download citation

Keywords

  • Texture Component
  • Ultrasonic Velocity
  • Aluminum Sheet
  • Rolling Texture
  • Cube Texture