Skip to main content
Log in

Dynamic Torsional Deformation Behavior of Ultra-Fine-Grained Dual-Phase Steel Fabricated by Equal Channel Angular Pressing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Dynamic torsional deformation behavior of an ultra-fine-grained dual-phase steel fabricated by equal channel angular pressing (ECAP) was investigated and compared with that of an equal channel angular pressed (ECAPed) ultra-fine-grained low-carbon steel. Tensile and dynamic torsional tests were conducted on these two steels, and the deformed microstructures were observed to investigate the dynamic deformation behavior. The ECAPed low-carbon steel consisted of very fine, elongated ferrite-pearlite grains of 0.5 μm in size, and the ECAPed dual-phase steel consisted of ferrite-martensite grains of 1 μm in size. The dynamic torsional test results indicated that maximum shear stress of the dual-phase steel was lower than that of the conventional steel, but that fracture shear strain was higher in the dual-phase steel. Some adiabatic shear bands were observed at the gage center of the dynamically deformed torsional specimen of the low-carbon steel, but they were not observed in the dual-phase steel because localized deformation was alleviated by the increased strain hardenability. These results suggested that the ECAPed ultra-fine-grained dual-phase steel could be a good way to increase the fracture resistance under dynamic loading as the formation of adiabatic shear bands was reduced or prevented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov: Prog. Mater. Sci., 2000, vol. 45, pp. 103–89

    Article  CAS  Google Scholar 

  2. N.A. Akhmadeev, N.P. Kobelev, R.R. Mulyukov, Y.M. Soifer, R.Z. Valiev: Acta Metall. Mater., 1993, vol. 41, pp. 1041–46

    Article  CAS  Google Scholar 

  3. K.T. Park, Y.S. Kim, J.G. Lee, D.H. Shin: Mater. Sci. Eng., 2000, vol. A293, pp. 165–72

    CAS  Google Scholar 

  4. D.H. Shin, Y.S. Kim, E.J. Lavernia: Acta Mater., 2001, vol. 49, pp. 2387–93

    Article  CAS  Google Scholar 

  5. D. Jia, K.T. Ramesh, E. Ma: Acta Mater., 2003, vol. 51, pp. 3495–509

    Article  CAS  Google Scholar 

  6. R.Z. Valiev, R.R. Mulyukov, V.V. Ovchinnikov, V.A. Shabashov: Scripta Mater., 1991, vol. 25, pp. 2717–22

    Article  CAS  Google Scholar 

  7. R.Z. Valiev, T.G. Langdon: Prog. Mater. Sci., 2006, vol. 51, pp. 881–981

    Article  CAS  Google Scholar 

  8. Y. Wang, M. Chen, F. Zhou, E. Ma: Nature, 2002, vol. 419, pp. 912–15

    Article  CAS  Google Scholar 

  9. K.T. Park, D.H. Shin: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 705–07

    Article  Google Scholar 

  10. S.-T. Oh, H.-J. Chang, K.H. Oh, H.N. Han: Met. Mater. Int., 2006, vol. 12, pp. 121–29

    CAS  Google Scholar 

  11. A. Marchand, J. Duffy: J. Mech. Phys. Solids, 1988, vol. 36, pp. 251–83

    Article  Google Scholar 

  12. K. Cho, S. Lee, S.R. Nutt, J. Duffy: Acta Mater., 1993, vol. 41, pp. 923–32

    Article  CAS  Google Scholar 

  13. Y. Shiota, Y. Tomota, A. Moriai, T. Kamiyama: Met. Mater. Int., 2005, vol. 11, pp. 371–76

    CAS  Google Scholar 

  14. C.G. Lee, K.J. Kim, S. Lee, K. Cho: Metall. Trans. A, 1998, vol. 29A, pp. 469–76

    Article  CAS  Google Scholar 

  15. G.T. Gray, T.C. Lowe, C.M. Cady, R.Z. Valiev, I.V. Aleksandrov: Nanostruct. Mater., 1997, vol. 9, pp. 477–80

    Article  CAS  Google Scholar 

  16. Q. Wei, L. Kecskes, T. Jiao, K.T. Hartwig, K.T. Ramesh, E. Ma: Acta Mater., 2004, vol. 52, pp. 1859–69

    Article  CAS  Google Scholar 

  17. M. Furukawa, Z. Horita, T.G. Langdon: Met. Mater. Int., 2003, vol. 9, pp. 141–49

    Article  CAS  Google Scholar 

  18. D.H. Shin, I. Kim, J. Kim: Met. Mater. Int., 2002, vol. 8, pp. 513–18

    CAS  Google Scholar 

  19. D.H. Shin, S.Y. Han, K.T. Park, Y.S. Kim, Y.N. Park: Mater. Trans. JIM, 2003, vol. 44, pp. 1630–35

    Article  CAS  Google Scholar 

  20. Y.I. Son, Y.K. Lee, K.T. Park, C.S. Lee, D.H. Shin: Acta Mater., 2005, vol. 53, pp. 3125–34

    Article  CAS  Google Scholar 

  21. M.E. Backman, S.A. Finnegan: in Metallurgical Effects at High Strain Rates, R.W. Rohde, B.M. Butcher, J.R. Holland, C.H. Karnes, eds., Plenum Press, New York, NY, 1973, pp. 531–43

    Google Scholar 

  22. H.C. Rogers, C.V. Shastry: Shock Waves and High-Strain-Rate Phenomena in Metals, M.A. Mayers, L.E. Murr, eds., Plenum Press, New York, NY, 1981, pp. 285–98

    Google Scholar 

  23. Y. Bai, B. Dodd: Adiabatic Shear Localization—Occurrence, Theories and Applications, Pergamon Press, Oxford, 1992, pp. 1–20

    Google Scholar 

  24. K. Cho, Y.C. Chi, J. Duffy: Metall. Trans. A, 1990, vol. 21A, pp. 1161–75

    CAS  Google Scholar 

  25. W.Y. Yeung, B.J. Duggan: Mater. Sci. Technol., 1986, vol. 2, pp. 552–58

    Google Scholar 

  26. B. Hwang, H.S. Lee, Y.G. Kim, S. Lee, B.D. Ahn, D.H. Shin, C.G. Lee: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 389–97

    Article  CAS  Google Scholar 

  27. M.A. Meyers: Dynamic Behavior of Materials, John Wiley & Sons, New York, NY, 1994, pp. 448–87

    Book  Google Scholar 

  28. D.K. Kim, S.Y. Kang, S. Lee, K.J. Lee: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 81–92

    Article  CAS  Google Scholar 

  29. H.S. Lee, B. Hwang, S. Lee, C.G. Lee, S.J. Kim: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2371–82

    Article  CAS  Google Scholar 

  30. S.P. Timothy, I.M. Hutching: Acta Metall., 1985, vol. 33, pp. 667–76

    Article  CAS  Google Scholar 

  31. I.A. El-Sesy, Z.M. El-Baradie: Mater. Lett., 2002, vol. 57, pp. 580–85

    Article  CAS  Google Scholar 

  32. N.J. Kim, G. Thomas: Metall. Trans. A, 1981, vol. 12A, pp. 483–89

    Google Scholar 

  33. G. Thomas, J.Y. Koo: in Structure and Properties of Dual-Phase Steels, R.A. Kot, J.W. Morris, eds., AIME, New York, NY, 1979, pp. 183–201

    Google Scholar 

  34. I.D. Choi, D.M. Kim, S.J. Kim, D.M. Bruce, D.K. Matlock, J.G. Speer: Met. Mater. Int., 2006, vol. 12, pp. 13–19

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Laboratory Program of the Korea Science and Engineering Foundation (KOSEF) and Grant No. 06K1501-00220 from the Center for Nanostructured Materials Technology under the 21 Century Frontier R&D Programs of the Ministry of Science and Technology, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghak Lee.

Additional information

Manuscript submitted August 30, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, B., Kim, Y., Lee, S. et al. Dynamic Torsional Deformation Behavior of Ultra-Fine-Grained Dual-Phase Steel Fabricated by Equal Channel Angular Pressing. Metall Mater Trans A 38, 3007–3013 (2007). https://doi.org/10.1007/s11661-007-9348-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9348-6

Keywords

Navigation