Metallurgical and Materials Transactions A

, Volume 39, Issue 8, pp 1804–1811 | Cite as

Effect of Intense Rolling and Folding on the Phase Stability of Amorphous Al-Y-Fe Alloys

Symposium: Bulk Metallic Glasses IV


A systematic examination of the effect of intense deformation on the crystallization behavior of amorphous Al85Y10Fe5, Al86Y9Fe5, and Al88Y5Fe7 alloys demonstrated a strong composition dependence of the crystallization reactions at true strain levels of about −500 pct. Primary crystallization occurs during the deformation of the Al88Y5Fe7 alloy, but for the Al86Y9Fe5 and Al85Y10Fe5 alloys, deformation-induced crystallization is not observed at a true strain of about −500 pct. At strain levels of the order of −1200 pct, the Al85Y10Fe5 alloy develops regions with primary Al, which is not observed during thermal processing of the same amorphous alloy without deformation. In addition, at strain levels of −1200 pct, a deformed Al88Y7Fe5 sample displays strong microstructural heterogeneities. Transmission electron microscopy (TEM) analysis showed the presence of nanocrystal dispersions adjacent to shear bands with a total width of about half a micrometer. The results demonstrate that the phase selection during deformation-induced crystallization can deviate from the thermally-induced phase selection. Novel phases and microstructures can thus be obtained from the deformation processing of amorphous alloys.


  1. 1.
    H. Chen, Y. He, G.J. Shiflet, S.J. Poon: Nature, 1994, vol. 367 (6463), pp. 541–44CrossRefGoogle Scholar
  2. 2.
    W.H. Jiang, M. Atzmon: Acta Mater., 2003, vol. 51 (14), pp. 4095–105CrossRefGoogle Scholar
  3. 3.
    R.J. Hebert, J.H. Perepezko: Mater. Sci. Eng., 2004, vols. A375–A377, . pp. 728–32Google Scholar
  4. 4.
    P.E. Donovan, W.M. Stobbs: Acta Metall., 1981, vol. 29 (8), pp. 1419–36CrossRefGoogle Scholar
  5. 5.
    Q.K. Li, M. Li: Appl. Phys. Lett., 2006, vol. 88 (24), pp. 241903–04CrossRefGoogle Scholar
  6. 6.
    J.J. Lewandowski, A.L. Greer: Nature Mater., 2006, vol. 5 (1), pp. 15–18CrossRefGoogle Scholar
  7. 7.
    R.J. Hebert, N. Boucharat, J.H. Perepezko, H. Rösner, G. Wilde: J. Alloys Compd., 2007, vols. 434–435, pp. 18–21CrossRefGoogle Scholar
  8. 8.
    J.-J. Kim, Y. Choi, S. Suresh, and A.S. Argon: Science, 2002, vol. 295 (5555), pp. 654–57Google Scholar
  9. 9.
    T. Masumoto and R. Maddin: Mater. Sci. Eng., 1975, vol. 19 (1), pp. 1–24CrossRefGoogle Scholar
  10. 10.
    G. Wilde: private communication, Institute of Nanotechnology, Research Center Karlsruhe, GermanyGoogle Scholar
  11. 11.
    J.C. Foley, J.H. Perepezko: J. Non-Cryst. Solids, 1996, vols. 205–207, pp. 559–62CrossRefGoogle Scholar
  12. 12.
    A. Inoue, K. Ohtera, A.-P. Tsai, T. Masumoto: Jpn. J. Appl. Phys., 1988, vol. 27 (4), pp. 479–82CrossRefGoogle Scholar
  13. 13.
    O. Li, E. Johnson, A. Johanson, L. Sarholt-Kristensen: J. Mater. Res., 1992, vol. 7 (10), pp. 2756–64CrossRefGoogle Scholar
  14. 14.
    R.F. Cochrane, P. Schumacher, A.L. Greer: Mater. Sci. Eng., 1991, vol. A133, pp. 367–70Google Scholar
  15. 15.
    N. Boucharat, R.J. Hebert, H. Rösner, R.Z. Valiev, G. Wilde: Scripta Mater., 2005, vol. 53 (7), pp. 823–28CrossRefGoogle Scholar
  16. 16.
    D.R. Allen, J.C. Foley, J.H. Perepezko: Acta Mater., 1998, vol. 46 (2), pp. 431–40CrossRefGoogle Scholar
  17. 17.
    A. Inoue, K. Ohtera, A.-P. Tsai, and T. Masumoto: Jpn. J. Appl. Phys., 1988, vol. 27 (3), Part 2, L280–L282Google Scholar
  18. 18.
    W.G. Stratton, J. Hamann, J.H. Perepezko, P.M. Voyles, X. Mao, S.V. Khare: Appl. Phys. Lett., 2005, vol. 86 (14), pp. 141910–13CrossRefGoogle Scholar
  19. 19.
    S.-W. Lee, M.-Y. Huh, S.W. Chae, J.-C. Lee: Scripta Mater., 2006, vol. 54 (8), pp. 1439–44CrossRefGoogle Scholar
  20. 20.
    A.A. Csontos, G.J. Shiflet: Nanostruct. Mater., 1997, vol. 9 (1–8), pp. 281–89CrossRefGoogle Scholar
  21. 21.
    Y. Zhang, A.L. Greer: Appl. Phys. Lett., 2006, vol. 89 (7), 071907–09CrossRefGoogle Scholar
  22. 22.
    Z. Kovács, P. Henitis, A.P. Zhilyaev, Á. Révész: Scripta Mater., 2006, vol. 54 (10), pp. 1733–37CrossRefGoogle Scholar
  23. 23.
    A. Ogura, R. Tarumi, M. Shimojo, K. Takashima, Y. Higo: Appl. Phys. Lett., 2001, vol. 79 (7), pp. 1042–44CrossRefGoogle Scholar
  24. 24.
    M.L. Sui, K. Lu, Y.Z. He: Philos. Mag., 1991, vol. 63 (4), pp. 993–1008CrossRefGoogle Scholar
  25. 25.
    G.J. Fan, M.X. Quan, Z.Q. Hu, W. Löser, J. Eckert: J. Mater. Res., 1999, vol. 14 (9), pp. 3765–74CrossRefGoogle Scholar
  26. 26.
    J.H. Perepezko, R.J. Hebert, and G. Wilde: Mater. Sci. Engr., 2004, vols. A375–A377, pp. 171–77CrossRefGoogle Scholar

Copyright information


Authors and Affiliations

  1. 1.Chemical, Materials, and Biomolecular Engineering DepartmentUniversity of ConnecticutStorrsUSA
  2. 2.Department of Materials Science and EngineeringUniversity of Wisconsin–MadisonMadisonUSA

Personalised recommendations