Skip to main content
Log in

Tensile Fracture Behavior of Nicalon/SiC Composites

  • Symposium: Deformation & Fracture from Nano to Macro: Honoring W.W. Gerberich's 70th Birthday
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The tensile behavior of Nicalon fiber-reinforced silicon carbide matrix composites (Nicalon/SiC) was investigated with the aid of nondestructive evaluation (NDE) techniques. The NDE techniques include ultrasonic testing (UT), X-ray computed tomography (CT), and infrared (IR) thermography. Before mechanical testing, UT C-scans were developed to investigate defect distributions and to detect variations in the internal flaws. X-ray CT was used to characterize the type of defects and the location of flaws in composites to compare with UT C-scan results. The IR thermography was employed to monitor temperature evolution during tensile testing. This article also investigated the feasibility of using multiple NDE techniques as a means of assessing integrity for Nicalon/SiC composites. Microstructural characterization was performed using scanning electron microscopy (SEM) to investigate failure mechanisms of Nicalon/SiC composites, and the results were compared with NDE data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. R.L. Lehman, S.K. El-Rahaiby, and J.B. Wachtman: Handbook on Continuous Fiber-Reinforced Ceramic Matrix Composites, American Ceramics Society, Westerville, OH, 1995, pp. 495–526

    Google Scholar 

  2. K.K. Chawla: Ceramic Matrix Composites. Chapman & Hall, London, 1993, pp. 4–9

    Google Scholar 

  3. M.A. Karnitz, D.F. Craig, S.L. Richlen: Ceram. Bull., 1991, vol. 70 (3), pp. 430–35

    CAS  Google Scholar 

  4. P.K. Liaw: Fiber-Reinforced CMCs: Processing, Mechanical Behavior and Modeling, JOM, Warrendale, PA, 1995, pp. 38–44

    Google Scholar 

  5. J.A. Dicarlo: Adv. Mater. Proc., 1989, June, pp. 41–46

    Google Scholar 

  6. A.G. Evans, D.B. Marshall: Acta Metall. Mater., 1989, vol. 37, pp. 2567–83

    Article  CAS  Google Scholar 

  7. N. Chawla: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 2423–27

    Article  CAS  Google Scholar 

  8. J. Kim, P.K. Liaw: J. Eng. Mater. Technol, 2005, vol. 127, pp. 8–15

    Article  CAS  Google Scholar 

  9. J. Kim, P.K. Liaw: Mater. Sci. Eng. A, 2005, vol. 409, pp. 302–08

    Article  CAS  Google Scholar 

  10. G. Mott, P.K. Liaw: Metall. Trans. A, 1988, vol. 19A, pp. 2233–46

    CAS  Google Scholar 

  11. P.K. Liaw, R.E. Shannon, and W.G. Clark Jr.: Proc. Symp. “Fundamental Relationships between Microstructures and Mechanical Properties of Metal Matrix Composites”. In M.N. Gungor, P.K. Liaw, eds., TMS-AIME, Warrendale, PA, 1990, pp. 581–615

  12. P.K. Liaw, R.E. Shannon, W.G. Clark, Jr., and W.C. Harrigan, Jr.: Morris E. Fine Symp., P.K. Liaw, J.R. Weertman, H.L. Marcus, and J.S. Santner, eds., TMS-AIME, Warrendale, PA, 1991, pp. 193–208

  13. P.K. Liaw, Y. Ijiri, B.J. Taszarek, S. Frohlich, M.N. Gungor, W.A. Logsdon: Metall. Trans.A., 1990, vol. 21A, pp. 529–38

    CAS  Google Scholar 

  14. Y. Ijiri, P.K. Liaw, B.J. Taszarek, S. Frohlich, M.N. Gungor: Metall. Trans. A, 1988, vol. 19A, pp. 2215–24

    CAS  Google Scholar 

  15. W.G. Clark Jr., J.N. Iyer: Mater. Eval., 1989, vol. 47, pp. 460–65

    CAS  Google Scholar 

  16. W.G. Clark Jr., R.E. Shannon: Adv. Mater. Processing, 1990, vol. 137, pp. 59–69

    Google Scholar 

  17. ASM Handbook, vol. 17, Nondestructive Evaluation and Quality Control, ASM INTERNATIONAL, Metals Park, OH, 1992, pp. 284–93

  18. D.K. Hsu, P.K. Liaw, N. Yu, V. Saini, N. Miriyala, L.L. Snead, R.A. Lowden, C.J. McHargue: Mater. Res. Soc. Symp. Proc., 1995, vol. 365, pp. 203–08

    CAS  Google Scholar 

  19. P.K. Liaw, N. Yu, D.K. Hsu, N. Miriyala, V. Saini, L.L. Snead, C.J. McHargue, R.A. Lowden: J. Nucl. Mater., 1995, vol. 219, pp. 93–100

    Article  CAS  Google Scholar 

  20. P.K. Liaw, D.K. Hsu, N. Yu, N. Miriyala, V. Saini, H. Jeong: Acta Metall. Mater., 1996, vol. 44(5), pp. 2101–13

    CAS  Google Scholar 

  21. J.H. Kinney, D.L. Haupt: J. Mater. Res., 1997, vol. 12(3), pp. 610–12

    Article  CAS  Google Scholar 

  22. S. Lee, S.R. Stock, M.D. Butts, T.L. Starr, T.M. Breunig, J.H. Kinney: J. Mater. Res., 1998, vol. 13(5), pp. 1209–17

    CAS  Google Scholar 

  23. M. Surgeon, E. Vanswijgenhoven, M. Wevers, O. Van Der Biest: Compos., Part A, 1997, vol. 28A, pp. 473–80

    Article  CAS  Google Scholar 

  24. J. Luo, S. Wooh, I.M. Daniel: J. Comp. Mater., 1995, vol. 29 (15), pp. 1946–61

    CAS  Google Scholar 

  25. T.M. Besmann, B.W. Sheldon, R.A. Lowen, D.P. Stinton: Science, 1991, vol. 253, pp. 1104–09

    Article  CAS  Google Scholar 

  26. D.P. Stinton, A.J. Caputo, R.A. Lowden: Am. Ceram. Soc. Bull., 1986, vol. 65 (2), pp. 347–50

    CAS  Google Scholar 

  27. S.I. Ganchev, R.J. Runser, N. Qaddoumi, E. Ranu, G. Carriveau: Mater. Eval., 1995, vol. 53(4), pp. 463–67

    Google Scholar 

  28. ASM Handbook, vol. 17, Nondestructive Evaluation and Quality Control, ASM INTERNATIONAL, Materials Park, OH, 1992, pp. 231–36

  29. J. Krautkramer, H. Krautkramer: Ultrasonic Testing of Materials, 4th ed., Springer-Verlag, New York, NY, 1990

    Google Scholar 

  30. D.C. Kunerth, L.A. Lott, J.B. Walter: Ceram. Eng. Sci. Proc., 1990, vol. 11(9–11), pp. 1685–95

    CAS  Google Scholar 

  31. P.C. Copley, J.W. Eberhand, and G.A. Mohr: JOM, 1994, Jan., pp. 14–26

  32. D.H. Phillips, J.J. Lannutti: Am. Ceram. Soc. Bull., 1993, vol. 72(11), pp. 69–75

    CAS  Google Scholar 

  33. Standard Test Method for Monotonic Tensile Behavior of Continuous Fiber-Reinforced Advanced Ceramics with Solid Rectangular Cross-Section Specimens at Ambient Temperatures, C1275-00, ASTM, Philadelphia, PA, 2000

Download references

Acknowledgments

This work was supported by the National Science Foundation, the Combined Research Curriculum Development (CRCD) Program, under Contract No. EEC-9527527, the Division of Design, Manufacture, and Industrial Innovation, under Contract No. DMI-9724476, and the Integrative Graduate Education and Research Training (IGERT) Program, under Contract No. DGE-9987548, to the University of Tennessee (UT), Knoxville, with Ms. Mary F. Poats, Dr. Delcie R. Durham, Dr. Wyn Jennings, and Dr. Larry Goldberg as contract monitors, respectively. Partial financial support for the publication of this work was given by the Korea Railroad Research Institute under Contract No. PK07007A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeongguk Kim.

Additional information

This article is based on a presentation given in the symposium entitled “Deformation and Fracture from Nano to Macro: A Symposium Honoring W.W. Gerberich’s 70th Birthday,” which occurred during the TMS Annual Meeting, March 12–16, 2006 in San Antonio, Texas and was sponsored by the Mechanical Behavior of Materials and Nanomechanical Behavior Committees of TMS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J., Liaw, P. Tensile Fracture Behavior of Nicalon/SiC Composites. Metall Mater Trans A 38, 2203–2213 (2007). https://doi.org/10.1007/s11661-007-9306-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9306-3

Keywords

Navigation