Skip to main content
Log in

Dislocation Nucleation and Source Activation during Nanoindentation Yield Points

  • Symposium: Deformation & Fracture from Nano to Macro: Honoring W.W. Gerberich's 70th Birthday
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The onset of plasticity during nanoindentation of a tungsten single crystal was examined as a function of pre-existing dislocation density. Vickers indentations were used to generate a spatially varying dislocation density, and nanoindentation was then carried out at regions of high and low dislocation densities. Even with dislocation densities as high as 1.8 × 1013 m−2, a sharp elastic-plastic transition was observed during some indentations. At lower dislocation densities, 3.5 × 109 m−2, the shear stress at the elastic plastic transition increased and approached the theoretical shear stress of the crystal. A first-order model that predicts the load required for the onset of plasticity during nanoindentation from the activation of a dislocation source within a critical volume of material, rather than homogeneous dislocation nucleation, is developed. The model correlates well with experimentally measured loads at the onset of plasticity for dislocation densities of 1012 m−2 and higher for these nanoindentation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. N. Gane, F.P. Bowden: J. Appl. Phys., 1967, vol. 39, pp.1432–35

    Article  Google Scholar 

  2. J. Pethica, D. Tabor: Surf. Sci., 1979, vol. 89, pp. 182–90

    Article  CAS  Google Scholar 

  3. A.B. Mann, J.B. Pethica: Appl. Phys. Lett., 1996, vol. 69, pp. 907–09

    Article  CAS  Google Scholar 

  4. W.W. Gerberich, J.C. Nelson, E.E. Lilleodden, P. Anderson, J.T. Wyrobek: Acta Mater., 1996, vol. 44, pp. 3585–98

    Article  CAS  Google Scholar 

  5. S.A. Syed-Asif, J.B. Pethica: Phil. Mag. A, 1997, vol. 76, pp. 1105–18

    Article  Google Scholar 

  6. D.F. Bahr, D.E. Kramer, W.W. Gerberich: Acta Mater., 1998, vol. 46, pp. 3605–17

    Article  CAS  Google Scholar 

  7. Y. Chiu and A. Ngan: Acta Mater., 2002, vol. 50, 1599–11

    Article  CAS  Google Scholar 

  8. J. Bradby, J. William, M. Swain: J. Mater. Res., 2003, vol. 19, pp. 380–86

    Article  Google Scholar 

  9. C.A. Schuh: Nat. Mater., 2005, vol. 4, pp. 617–22

    Article  CAS  Google Scholar 

  10. C.L. Kelchner, S.J. Plimpton, J.C. Hamilton: Phys. Rev. B, 1998, vol. 58, pp. 11085–11088

    Article  CAS  Google Scholar 

  11. D. Rodriquez-Marek, M. Pang, D.F. Bahr: Metall. Mater. Trans. A, 2003, vol. 34A, 1291–96

    Article  Google Scholar 

  12. M. Pang, D.F. Bahr: J. Mater. Res., 2001, vol. 16, pp. 2634–43

    CAS  Google Scholar 

  13. E. Weppelmann, M.V. Swain: Thin Solid Films, 1996, vol. 286, pp. 111–21

    Article  CAS  Google Scholar 

  14. S.V. Hainsworth, M.R. McGurk, T.F. Page: Surf. Coat. Technol., 1998, vol. 102, pp. 97–107

    Article  CAS  Google Scholar 

  15. D.E. Kramer, K.B. Yoder, W.W. Gerberich: Phil. Mag. A, 2001, vol. 81, pp. 2033–58

    Article  CAS  Google Scholar 

  16. G.F. Vander Voort: Metallography Principles and Practice, McGraw-Hill, New York, NY, 1984, pp. 599 and 697

    Google Scholar 

  17. Y. Shibutani, A. Koyama: J. Mater. Res., 2003, vol. 19, pp. 183–88

    Article  Google Scholar 

  18. S. Amelinckx: Phil. Mag., 1956, vol. 1, pp. 269–90

    Article  CAS  Google Scholar 

  19. K.L. Johnson: Contact Mechanics, Cambridge University Press, New York, NY, 1985, pp. 90–104

    Google Scholar 

  20. N. Stelmashenko, M.G. Walls, L.M. Brown, and Yu.V. Milman: Acta Metall. Mater., 1993, vol. 46, pp. 2855–65

    Google Scholar 

  21. T. Michalske and J.E. Houston: Acta Mater., 1998, vol. 46, pp. 391–96

    Article  CAS  Google Scholar 

  22. D.F. Bahr, D.E. Wilson, D.A. Crowson: J. Mater. Res., 1999, vol. 14, pp. 2269–75

    CAS  Google Scholar 

  23. J.G. Swadener, B. Taljit, G.M. Pharr: J. Mater. Res., 2001, vol. 16, pp. 2091–2102

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D.F. Bahr.

Additional information

This article is based on a presentation given in the symposium entitled “Deformation and Fracture from Nano to Macro: A Symposium Honoring W.W. Gerberich’s 70th Birthday,” which occurred during the TMS Annual Meeting, March 12–16, 2006 in San Antonio, Texas and was sponsored by the Mechanical Behavior of Materials and Nanomechanical Behavior Committees of TMS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zbib, A., Bahr, D. Dislocation Nucleation and Source Activation during Nanoindentation Yield Points. Metall Mater Trans A 38, 2249–2255 (2007). https://doi.org/10.1007/s11661-007-9284-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9284-5

Keywords

Navigation