Metallurgical and Materials Transactions A

, Volume 38, Issue 10, pp 2552–2563 | Cite as

Nucleation and Precipitation Strengthening in Dilute Al-Ti and Al-Zr Alloys

  • Keith E. KniplingEmail author
  • David C. Dunand
  • David N. Seidman


Two conventionally solidified Al-0.2Ti alloys (with 0.18 and 0.22 at. pct Ti) exhibit no hardening after aging up to 3200 hours at 375 °C or 425 °C. This is due to the absence of Al3Ti precipitation, as confirmed by electron microscopy and electrical conductivity measurements. By contrast, an Al-0.2Zr alloy (with 0.19 at. pct Zr) displays strong age hardening at both temperatures due to precipitation of Al3Zr (L12) within Zr-enriched dendritic regions. This discrepancy between the two alloys is explained within the context of the equilibrium phase diagrams: (1) the disparity in solid and liquid solubilities of Ti in α-Al is much greater than that of Zr in α-Al; and (2) the relatively small liquid solubility of Ti in α-Al limits the amount of solute retained in solid solution during solidification, while the comparatively high solid solubility reduces the supersaturation effecting precipitation during post-solidification aging. The lattice parameter mismatch of Al3Ti (L12) with α-Al is also larger than that of Al3Zr (L12), further hindering nucleation of Al3Ti. Classical nucleation theory indicates that the minimum solute supersaturation required to overcome the elastic strain energy of Al3Ti nuclei cannot be obtained during conventional solidification of Al-Ti alloys (unlike for Al-Zr alloys), thus explaining the absence of Al3Ti precipitation and the presence of Al3Zr precipitation.


Al3Ti Elastic Strain Energy Supersaturated Solid Solution Al3Zr Rapid Solidification Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by the United States Department of Energy, Basic Sciences Division, under Contract No. DE-FG02-02ER45997. Gratitude is expressed to KB Alloys for providing the Al-Zr master alloy. We are indebted to Dr. J.L. Murray (Alcoa), for providing the most recent and reliable data for the binary Al-Ti and Al-Zr phase diagrams. We also thank Dr. J.Z. Liu and Professor M. Asta (Northwestern University and University of California, Davis), for calculating the metastable L12 solvus curves for Al3Ti and Al3Zr, and Professor M.E. Fine (Northwestern University) for useful discussions.


  1. 1.
    K.E. Knipling, D.C. Dunand, D.N. Seidman: Z. Metallkd., 2006, vol. 97, pp. 246–65Google Scholar
  2. 2.
    H. Jones, W.M. Rainforth: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 419–21CrossRefGoogle Scholar
  3. 3.
    J.F. Nie, S. Sridhara, B.C. Muddle: Metall. Trans. A, 1992, vol. 23A, pp. 3193–205Google Scholar
  4. 4.
    J.F. Nie, A. Majumdar, B.C. Muddle: Mater. Sci. Eng. A, 1994, vol. 179, pp. 619–24CrossRefGoogle Scholar
  5. 5.
    J.F. Nie, B.C. Muddle: Mater. Sci. Eng. A, 1996, vol. 215, pp. 92–103CrossRefGoogle Scholar
  6. 6.
    W.E. Frazier, M.J. Koczak: in High Strength Powder Metallurgy Aluminum Alloys II, G.J. Hildeman, M.J. Koczak, eds., TMS, Warrendale, PA, 1986, pp. 353–66Google Scholar
  7. 7.
    J.M. Wu, S.L. Zheng, Z.Z. Li: Mater. Sci. Eng. A, 2000, vol. 289, pp. 246–54CrossRefGoogle Scholar
  8. 8.
    Y. Wang, Z. Zhang, W. Wang, X. Bian: Mater. Sci. Eng. A, 2004, vol. 366, pp. 17–24CrossRefGoogle Scholar
  9. 9.
    G.X. Liang, Z.C. Li, E. Wang: J. Mater. Sci., 1996, vol. 31, pp. 901–04CrossRefGoogle Scholar
  10. 10.
    W.E. Frazier, M.J. Koczak: Scripta Metall., 1987, vol. 21, pp. 129–34CrossRefGoogle Scholar
  11. 11.
    G.S. Murty, M.J. Koczak, W.E. Frazier: Scripta Metall., 1987, vol. 21, pp. 141–46CrossRefGoogle Scholar
  12. 12.
    J.A. Hawk, P.K. Mirchandani, R.C. Benn, H.G.F. Wilsdorf: in Dispersion Strengthened Aluminum Alloys, Y.W. Kim, W.M. Griffith, eds., TMS, Warrendale, PA, 1988, pp. 551–72Google Scholar
  13. 13.
    J.A. Hawk, K.R. Lawless, H.G.F. Wilsdorf: Scripta Metall., 1989, vol. 23, pp. 119–24CrossRefGoogle Scholar
  14. 14.
    J.A. Hawk, J.K. Briggs, H.G.F. Wilsdorf: in Advances in Powder Metallurgy, T.G. Gasbarre, W.F. Jandeska, eds., MPIF, Princeton, NJ, 1989, pp. 285–99Google Scholar
  15. 15.
    P.K. Mirchandani, R.C. Benn, K.A. Heck: in Lightweight Alloys for Aerospace Applications, E.W. Lee, E.H. Chia, N.J. Kim, eds., TMS, Warrendale, PA, 1989, pp. 33–58Google Scholar
  16. 16.
    P.K. Mirchandani, D.O. Gothard, A.I. Kemppinen: in Advances in Powder Metallurgy, T.G. Gasbarre, W.F. Jandeska, eds., MPIF, Princeton, NJ, 1989, pp. 161–73Google Scholar
  17. 17.
    S.H. Wang, P.W. Kao: Acta Mater., 1998, vol. 46, pp. 2675–82CrossRefGoogle Scholar
  18. 18.
    I.C. Barlow, H. Jones, W.M. Rainforth: Acta Mater., 2001, vol. 49, pp. 1209–24CrossRefGoogle Scholar
  19. 19.
    T. Ohashi, R. Ichikawa: Z. Metallkd., 1973, vol. 64, pp. 517–21Google Scholar
  20. 20.
    F.A. Crossley, L.F. Mondolfo: Trans. AIME, 1951, vol. 191, pp. 1143–48Google Scholar
  21. 21.
    D.G. McCartney: Int. Mater. Rev., 1989, vol. 34, pp. 247–60Google Scholar
  22. 22.
    B.S. Murty, S.A. Kori, M. Chakraborty: Int. Mater. Rev., 2002, vol. 47, pp. 3–29CrossRefGoogle Scholar
  23. 23.
    W. Dahl, W. Gruhl, W.G. Burchard, G. Ibe, C. Dumitrescu: Z. Metallkd., 1977, vol. 68, pp. 121–27Google Scholar
  24. 24.
    S. Hori, S. Saji, A. Takehara: Proc. 4th Int. Conf. on Rapidly Quenched Metals, T. Masumoto, K. Suzuki, eds., The Japan Institute of Metals, Sendai, Japan, 1981, pp. 1545–48Google Scholar
  25. 25.
    S. Hori, N. Furushiro: Proc. 4th Int. Conf. on Rapidly Quenched Metals, T. Masumoto, K. Suzuki, eds., The Japan Institute of Metals, Sendai, Japan, 1981, pp. 1525–28Google Scholar
  26. 26.
    S. Hori, N. Furushiro, W. Fujitani: J. Jpn. Inst. Light Met., 1980, vol. 30, pp. 617–25Google Scholar
  27. 27.
    A.F. Norman, P. Tsakiropoulos: Int. J. Rapid Solid., 1991, vol. 6, pp. 185–213Google Scholar
  28. 28.
    W.L. Fink, K.R. van Horn, P.M. Budge: AIMME Trans., 1931, vol. 93, pp. 421–39Google Scholar
  29. 29.
    H.A.F. El-Halfawy, E.S.K. Menon, M. Sundararaman, P. Mukhopadhyay: Metallography, 1979, vol. 12, pp. 257–62CrossRefGoogle Scholar
  30. 30.
    H.A.F. El-Halfawy: Titanium ‘80–Science and Technology–4th Int. Conf. on Titanium, H. Kimura, O. Izumi, eds., TMS, Warrendale, PA, 1980, pp. 1379–87Google Scholar
  31. 31.
    D.H. St John, L.M. Hogan: J. Mater. Sci., 1980, vol. 15, pp. 2369–75CrossRefGoogle Scholar
  32. 32.
    K. Venkateswarlu, S.K. Das, M. Chakraborty, B.S. Murty: Mater. Sci. Eng. A, 2003, vol. 351, pp. 237–43CrossRefGoogle Scholar
  33. 33.
    N.F. Levoy, J.B. Vander Sande: Metall. Trans. A, 1989, vol. 20A, pp. 999–1019Google Scholar
  34. 34.
    P. Malek, M. Janecek, B. Smola: Kov. Mater., 2000, vol. 38, pp. 160–77Google Scholar
  35. 35.
    K.E. Knipling, D.C. Dunand, and D.N. Seidman: unpublished research, 2007Google Scholar
  36. 36.
    H.W. Kerr, J. Cisse, G.F. Bolling: Acta Metall., 1974, vol. 22, pp. 677–86CrossRefGoogle Scholar
  37. 37.
    H.W. Kerr, W. Kurz: Int. Mater. Rev., 1996, vol. 41, pp. 129–64Google Scholar
  38. 38.
    D.H. St. John, L.M. Hogan: J. Mater. Sci., 1982, vol. 17, pp. 2413–18CrossRefGoogle Scholar
  39. 39.
    J.F. Nie, B.C. Muddle: Mater. Sci. Eng. A, 1996, vol. 221, pp. 11–21CrossRefGoogle Scholar
  40. 40.
    B.S. You, W.W. Park: Scripta Mater., 1996, vol. 34, pp. 201–05CrossRefGoogle Scholar
  41. 41.
    T. Ohashi, R. Ichikawa: J. Jpn. Inst. Met., 1970, vol. 34, pp. 604–10Google Scholar
  42. 42.
    V. Dobatkin, V.I. Elagin, V.M. Federov, and R.M. Sizova: Russ. Metall., 1970, pp. 122–27Google Scholar
  43. 43.
    W.W. Park, T.H. Kim: J. Kor. Inst. Met., 1985, vol. 3, pp. 11–18Google Scholar
  44. 44.
    W.W. Park, T.H. Kim: Scripta Metall., 1988, vol. 22, pp. 1709–14CrossRefGoogle Scholar
  45. 45.
    R. Ichikawa, T. Ohashi: J. Jpn. Inst. Light Met., 1968, vol. 18, pp. 314–19Google Scholar
  46. 46.
    T. Sato, A. Kamio, G.W. Lorimer: Mater. Sci. Forum, 1996, vols. 217222, pp. 895–900CrossRefGoogle Scholar
  47. 47.
    H. Okamoto: Phase Diagrams of Dilute Binary Alloys, ASM INTERNATIONAL, Materials Park, OH, 2002Google Scholar
  48. 48.
    E. Babic, E. Girt, R. Krsnik, B. Leontic, M. Ocko, Z. Vucic, I. Zoric: Physica Status Solidi A, 1973, vol. 16, pp. K21–K25CrossRefGoogle Scholar
  49. 49.
    E. Sahin, H. Jones: in Rapidly Quenched Metals II, B. Cantor, ed., The Metals Society, London, 1978, pp. 138–46Google Scholar
  50. 50.
    J. Cisse, H.W. Kerr, G.F. Bolling: Metall. Trans., 1974, vol. 5, pp. 633–41CrossRefGoogle Scholar
  51. 51.
    T. Ohashi, R. Ichikawa: J. Jpn. Inst. Light Met., 1977, vol. 27, pp. 105–12Google Scholar
  52. 52.
    O.A. Setiukov, I.N. Fridlyander: Mater. Sci. Forum, 1996, vols. 217222, pp. 195–200Google Scholar
  53. 53.
    N. Ryum: J. Mater. Sci., 1975, vol. 10, pp. 2075–81CrossRefGoogle Scholar
  54. 54.
    M.F. Ashby, L.M. Brown: Phil. Mag., 1963, vol. 8, pp. 1083–1102CrossRefGoogle Scholar
  55. 55.
    V.L. Nordheim: Ann. Phys., 1931, vol. 9, pp. 641–78CrossRefGoogle Scholar
  56. 56.
    J. Royset, N. Ryum: Mater. Sci. Eng. A, 2005, vol. 396, pp. 409–22CrossRefGoogle Scholar
  57. 57.
    M.E. van Dalen, D.C. Dunand, D.N. Seidman: Acta Mater., 2005, vol. 53, pp. 4225–35CrossRefGoogle Scholar
  58. 58.
    K.E. Knipling, D.C. Dunand, and D.N. Seidman: Microsc. Microanal., 2006, accepted for publicationGoogle Scholar
  59. 59.
    J.L. Murray: Alcoa, Alcoa Center, PA, personal communication, 2005Google Scholar
  60. 60.
    J.L. Murray, A. Peruzzi, J.P. Abriata: J. Phase Equil., 1992, vol. 13, pp. 277–91CrossRefGoogle Scholar
  61. 61.
    J.Z. Liu:, Ph.D. Thesis, Northwestern University, Evanston, IL, 2006Google Scholar
  62. 62.
    J.Z. Liu, G. Ghosh, A. van de Walle, and M. Asta: Phys. Rev. B, 2007, vol. 75, p. 104117CrossRefGoogle Scholar
  63. 63.
    G.W. Lorimer, R.B. Nicholson: Mechanism of Phase Transformations in Crystalline Solids, Session II, Institute of Metals, London, 1969, pp. 36–42Google Scholar
  64. 64.
    K.C. Russell: in Phase Transformations, H.I. Aaronson, ed., ASM, Metals Park, OH, 1970, pp. 219–68Google Scholar
  65. 65.
    R.D. Doherty: in Physical Metallurgy, R.W. Cahn, P. Haasen, eds., Elsevier, Amsterdam, 1983, pp. 933–1030Google Scholar
  66. 66.
    H.I. Aaronson, F.K. LeGoues: Metall. Trans. A, 1992, vol. 23A, pp. 1915–45Google Scholar
  67. 67.
    R. Wagner, R. Kampmann, P.W. Voorhees: in Phase Transformations in Materials, G. Kostorz, ed., Wiley-VCH, New York, NY, 2001, pp. 309–407CrossRefGoogle Scholar
  68. 68.
    B. Chalmers: Principles of Solidification, John Wiley & Sons, New York, NY, 1964, pp. 126–28Google Scholar
  69. 69.
    M.C. Flemings: Solidification Processing, McGraw-Hill, New York, NY, 1974, pp. 31–32Google Scholar
  70. 70.
    W. Kurz, D.J. Fisher: Fundamentals of Solidification, 4th ed., Trans Tech Publications, Aedermannsdorf, Switzerland, 1998. p. 15Google Scholar
  71. 71.
    H.J. Frost, M.F. Ashby: Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Pergamon Press, New York, NY, 1982, p. 21Google Scholar
  72. 72.
    M.A. Meyers, K.K. Chawla: Mechanical Metallurgy: Principles and Applications, Prentice-Hall, Englewood Cliffs, NJ, 1984, p. 58Google Scholar
  73. 73.
    Y. Harada, D.C. Dunand: Scripta Mater., 2003, vol. 48, pp. 219–22CrossRefGoogle Scholar
  74. 74.
    J. Royset, N. Ryum: Scripta Mater., 2005, vol. 52, pp. 1275–79CrossRefGoogle Scholar
  75. 75.
    S. Hori, H. Tai, Y. Narita: J. Jpn. Inst. Light Met., 1982, vol. 32, pp. 596–603Google Scholar
  76. 76.
    S. Hori, H. Tai, Y. Narita: in Rapidly Quenched Metals, S. Steeb, H. Warlimont, eds., Elsevier Science Publishers, Wurzburg, 1985, pp. 911–14Google Scholar
  77. 77.
    K. Asboll, N. Ryum: J. Inst. Met., 1973, vol. 101, pp. 212–14Google Scholar
  78. 78.
    S.K. Pandey, C. Suryanarayana: Mater. Sci. Eng. A, 1989, vol. 111, pp. 181–87CrossRefGoogle Scholar
  79. 79.
    T. Ohashi, K. Suzuki, R. Ichikawa: Bull. Nagoya Inst. Technol., 1971, vol. 23, pp. 459–65Google Scholar
  80. 80.
    A. Majumdar, R.H. Mair, B.C. Muddle: in Science and Technology of Rapidly Quenched Alloys, M. Tenhover, W.L. Johnson, L.E. Tanner, eds., MRS, Pittsburgh, PA, 1987, pp. 253–60Google Scholar
  81. 81.
    J.F. Nie, B.C. Muddle: Mater. Sci. Eng. A, 1996, vol. 221, pp. 22–32CrossRefGoogle Scholar
  82. 82.
    N. Ryum: Acta Metall., 1969, vol. 17, pp. 269–78CrossRefGoogle Scholar
  83. 83.
    M. Sundberg, R. Sundberg, B. Jacobson: Jernkont. Ann., 1971, vol. 155, pp. 1–15Google Scholar
  84. 84.
    S. Rystad, N. Ryum: Aluminium, 1977, vol. 53, pp. 193–95Google Scholar
  85. 85.
    H. Westengen, L. Auran, O. Reiso: Aluminium, 1981, vol. 57, pp. 797–803Google Scholar

Copyright information


Authors and Affiliations

  • Keith E. Knipling
    • 1
    • 2
    Email author
  • David C. Dunand
    • 1
  • David N. Seidman
    • 3
  1. 1.Department of Materials Science and EngineeringNorthwestern UniversityEvanstonUSA
  2. 2.Naval Research LaboratoryWashingtonUSA
  3. 3.Department of Materials Science and Engineering and Northwestern University Center for Atom-Probe Tomography (NUCAPT)Northwestern UniversityEvanstonUSA

Personalised recommendations