Metallurgical and Materials Transactions A

, Volume 39, Issue 7, pp 1573–1577 | Cite as

Influence of Cooling Rate on the Enthalpy Relaxation and Fragility of a Metallic Glass

Symposium: Materials Behavior: Far from Equilibrium


Structural relaxation behavior of a rapidly quenched (RQ) and a slowly cooled Pd40Cu30Ni10P20 metallic glass was investigated and compared. Differential scanning calorimetry was employed to monitor the relaxation enthalpies at the glass transition temperature, Tg, and the Kolrausch–Williams–Watts (KWW) stretched exponential function was used to describe its variation with annealing time. It was found that the rate of enthalpy recovery is higher in the ribbon, implying that the bulk is more resistant to relaxation at low temperatures of annealing. This was attributed to the possibility of cooling rate affecting the locations where the glasses get trapped within the potential energy landscape. The RQ process traps a larger amount of free volume, resulting in higher fragility, and in turn relaxes at the slightest thermal excitation (annealing). The slowly cooled bulk metallic glass (BMG), on the other hand, entraps lower free volume and has more short-range ordering, hence requiring a large amount of perturbation to access lower energy basins.


  1. 1.
    I.M. Hodge: J. Non-Cryst. Solids, 1994, vol. 169, pp. 211–66CrossRefGoogle Scholar
  2. 2.
    M.H. Cohen, D. Turnbull: J. Chem. Phys., 1959, vol. 31, pp. 1164–69CrossRefGoogle Scholar
  3. 3.
    O.P. Bobrov, V.A. Khonik, K. Kitagawa, S.N. Laptev: J. Non-Cryst. Solids, 2004, vol. 342, pp. 152–59CrossRefGoogle Scholar
  4. 4.
    C. Nagel, K. Ratzke, E. Schmidtke, J. Wolff, U. Geyer, and F. Faupel: Phys. Rev. B, 1998, vol. 57, pp. 10224–27CrossRefGoogle Scholar
  5. 5.
    A.E. Berlev, O.P. Bobrov, V.A. Khonik, K. Csach, A. Jurikova ,J. Miskuf, H. Neuhauser, M.Y. Yazvitsky: Phys. Rev. B, 2003, vol. 68, pp. 132203–132204CrossRefGoogle Scholar
  6. 6.
    U. Ramamurty, M.L. Lee, J. Basu, Y. Li: Scripta Mater., 2002, vol. 47, pp. 107–11CrossRefGoogle Scholar
  7. 7.
    H.W. Jin, R. Ayer, J.Y. Koo, R. Raghavan, U. Ramamurty: J. Mater. Res., 2007, vol. 22, pp. 264–73CrossRefGoogle Scholar
  8. 8.
    R. Raghavan, P. Murali, U. Ramamurty: Intermetallics, 2006, vol. 14, pp. 1051–54CrossRefGoogle Scholar
  9. 9.
    O.P. Bobrov, K. Csach, S.V. Khonik, K. Kitagawa, S.A. Lyakhov, M. Yu. Yazvitsky, V.A. Khonik: Scripta Mater., 2007, vol. 56, pp. 29–32CrossRefGoogle Scholar
  10. 10.
    N. Nishiyama, A. Inoue: Mater. Trans. JIM, 1997, vol. 38, pp. 464–72Google Scholar
  11. 11.
    W.H. Jiang, F.X. Liu, Y.D. Wang, H.F. Zhang, H. Choo, P.K. Liaw: Mater. Sci. Eng. A, 2006, vol. 430, pp. 350–54CrossRefGoogle Scholar
  12. 12.
    K.L. Ngai: Non-Debye Relaxation in Condensed Matter, World Scientific, Singapore, 1987Google Scholar
  13. 13.
    R. Bohmer, K.L. Ngai, C.A. Angell, D.J. Plazek: J. Chem. Phys., 1993, vol. 99, p. 4201CrossRefGoogle Scholar
  14. 14.
    C.A. Angell: J. Non-Cryst. Solids, 1991, vols. 131–133, pp. 13–31CrossRefGoogle Scholar
  15. 15.
    C.A. Angell: J. Phys. Chem. Solids, 1988, vol. 49, p. 863CrossRefGoogle Scholar
  16. 16.
    G.J. Fan, J.F. Loffler, R.K. Wunderlich, H.-J. Fetch: Acta Mater., 2004, vol. 52, pp. 667–74CrossRefGoogle Scholar
  17. 17.
    O.P. Bobrov, K. Csach, V.A. Khonik, S.N. Laptev, and M.Y. Yazvitsky: Scripta Mater., 2006, vol. 54, pp. 369–73CrossRefGoogle Scholar
  18. 18.
    M. Weiss, M. Moske, K. Samwer: Appl. Phys. Lett., 1996, vol. 69, pp. 3200–02CrossRefGoogle Scholar
  19. 19.
    D. Su, R.H. Dauskardt: J. Mater. Res., 2003, vol. 17, pp. 1254–57Google Scholar
  20. 20.
    P. Murali, U. Ramamurty: Acta Mater., 2005, vol. 53, pp. 1467–78CrossRefGoogle Scholar

Copyright information


Authors and Affiliations

  1. 1.Department of Materials EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations