Skip to main content
Log in

Effect of Lateral Constraint on the Mechanical Properties of a Closed-Cell Al Foam: Part II. Strain-Hardening Models

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Experimental results, presented in the companion article, show that the compressive deformation of a closed-cell Al foam under lateral constraint is characterized by significant strain hardening. This enhanced hardening is due to the change in stress state from uniaxial to triaxial, which additionally contributes to friction between the deforming foam and the walls of the constraining sleeve. Detailed analysis, employing two different types of deformation models, is presented in this article in order to rationalize the experimental observations. In the heterogeneous model, it is assumed that plastic deformation is similar with and without constraint and that it occurs via collective plastic collapse of cells. The bands, thus formed, elastically bear the lateral stresses and give rise to friction. In the homogeneous deformation model, it is assumed that the deformation mode is different under constraint and involves uniform densification, which leads to inherent hardening as well as additional friction. By comparing the model predictions with experimental observations, it is suggested that the plastic strain hardening of the metallic foam under constraint is due, in equal measure, to the triaxial state of stress and friction. Mechanistically, the material deforms principally by collective cell collapse, though there is some evidence of concurrent homogeneous deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Kolluri, S. Karthikeyan, and U. Ramamurty, DOI: 10.1007/s11661-007-9245-z

  2. A. Harte, N. Fleck, M. Ashby: Acta Mater., 1999, vol. 47, pp. 2511–24

    Article  CAS  Google Scholar 

  3. A. Evans, J. Hutchinson, M.F. Ashby: Progr. Mater. Sci., 1998, vol. 43, pp. 171–221

    Article  CAS  Google Scholar 

  4. L. Gibson, M. Ashby: Cellular Solids—Structure and Properties, 2nd ed., Cambridge University Press, Cambridge, United Kingdom, 1997, pp. 175–281

    Google Scholar 

  5. H. Bart-Smith, A. Bastawros, D. Mumm, A. Evans, D. Sypeck, H. Wadley: Acta Mater., 1998, vol. 46, pp. 3583–92

    Article  CAS  Google Scholar 

  6. E. Maire, A. Emoutaouakkil, A. Fazekas, L. Salvo: MRS Bull., 2003, vol. 28, pp. 284–89

    CAS  Google Scholar 

  7. E. Andrews, W. Sanders, L. Gibson: Mater. Sci. Eng. A, 1999, vol. A270, pp. 113–24

    CAS  Google Scholar 

  8. P. Kenesei, C. Kadar, Z. Rajkovits, J. Lendvai: Scripta Mater., 2004, vol. 50, pp. 295–300

    Article  CAS  Google Scholar 

  9. V. Deshpande, N. Fleck: J. Mech. Phys. Sol., 2000, vol. 48, pp. 1253–83

    Article  CAS  Google Scholar 

  10. G. Gioux, T. McCormack, L. Gibson: Int. J. Mech. Sci., 2000, vol. 42, pp. 1097–1117

    Article  Google Scholar 

  11. R. Miller: Int. J. Mech. Sci., 2000, vol. 42, pp. 729–54

    Article  Google Scholar 

  12. D. Ruan, G. Lu, B. Wang: WIT Trans. Eng. Sci., 2005, vol. 49, pp. 437–49

    Google Scholar 

  13. T. Triantafillou, J. Zhang, T. Shercliff, L. Gibson, M. Ashby: Int. J. Mech. Sci., 1989, vol. 31, pp. 665-78

    Article  Google Scholar 

  14. M. Silva, W. Hayes, L. Gibson: Int. J. Mech. Sci., 1995, vol. 37, pp. 1161–77

    Article  Google Scholar 

  15. C. Chen, T. Lu, N. Fleck: J. Mech. Phys. Sol., 1999, vol. 47, pp. 2235–72

    Article  CAS  Google Scholar 

  16. J. Grenestedt: J. Mech. Phys. Sol., 1998, vol. 46, pp. 29–50

    Article  CAS  Google Scholar 

  17. J. Zhang, N. Kikuchi, V. Li, A. Yee, G. Nusholtz: Int. J. Impact Eng., 1998, vol. 21, pp. 369–86

    Article  Google Scholar 

  18. J. Banhart: Progr. Mater. Sci., 2001, vol. 46, pp. 559–632

    Article  CAS  Google Scholar 

  19. C.S. Liu, Z. Zhu, F. Han, J. Banhart: Phil. Mag. A, 2000, vol. 80, pp. 1085–92

    Article  CAS  Google Scholar 

  20. I. Golovin, H.-R. Sinning: Mater. Sci. Eng. A, 2004, vol. 370, pp. 504–11

    Article  Google Scholar 

  21. U. Ramamurty, A. Paul: Acta Mater., 2004, vol. 52, pp. 869–76

    Article  CAS  Google Scholar 

  22. Y. Sugimura, J. Meyer, M. He, H. Bart-Smith, J. Grenestedt, A. Evans: Acta Mater., 1997, vol. 45, pp. 5245–59

    Article  CAS  Google Scholar 

  23. J. Beals, M. Thomson: J. Mater. Sci., 1997, vol. 32, pp. 3595–3600

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Ramamurty.

Additional information

Manuscript submitted November 20, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karthikeyan, S., Kolluri, M. & Ramamurty, U. Effect of Lateral Constraint on the Mechanical Properties of a Closed-Cell Al Foam: Part II. Strain-Hardening Models. Metall Mater Trans A 38, 2014–2023 (2007). https://doi.org/10.1007/s11661-007-9213-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9213-7

Keywords

Navigation