Skip to main content

Advertisement

Log in

In-Situ Observations on the Fracture Mechanism of Diffusion-Alloyed Ni-Containing Powder Metal Steels and a Proposed Method for Tensile Strength Improvement

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The mechanical properties of Ni-containing powder metal (PM) steels are usually inferior to those of their wrought counterparts. The main problem is attributed to the non-uniform Ni distribution, in addition to the problems caused by porosity. The effects of this non-uniform alloying on the mechanical properties were investigated in this study using mini tensile bars that were made of diffusion-alloyed FD-0405 (Fe-4Ni-1.5Cu-0.5Mo-0.5C) powders. In-situ observations under a scanning electron microscope (SEM) were carried out during the tensile testing. The results indicated that the soft Ni-rich/C-lean area around the pore, which was identified as ferrite using electron backscattered diffraction (EBSD) analysis, was responsible for the failures. By adding Cr in the form of prealloyed powders, the distribution of Ni and C became more uniform, and the Ni-rich/C-lean ferrite was replaced by bainite and martensite. After sintering at 1250 °C for 1 hour, the tensile strength of the Fe-4Ni-1.5Cr-0.2Mo-0.5C and Fe-4Ni-3Cr-0.5Mo-0.5C reached 1178 and 1323 MPa, respectively, without employing any accelerated cooling system. These properties are higher than all those reported to date in the literature for sinter-hardened PM alloys that were rapidly cooled after sintering. This significant improvement was attributed to the homogeneous alloying, particularly due to the reduction of the repelling effect between Ni and C, as was explained through the thermodynamics analysis using the Thermo-Calc program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. F. Thümmler and R. Oberacker: Introduction to PM, The Institute of Materials, London, UK, 1993, pp. 255–58

  2. N. Chawla, X. Deng: Mater. Sci. Eng., 2005, vol. 390A, pp. 98–112

    Google Scholar 

  3. W.A. Spitzig, R.E. Semlser, O. Richmond: Acta Metall., 1988, vol. 36 (5), pp. 1201–11

    Article  CAS  Google Scholar 

  4. R.J. Bourcier, D.A. Koss, R.E. Smelser, O. Richmond: Acta Metall., 1986, vol. 34 (12), pp. 2443–53

    Article  CAS  Google Scholar 

  5. K.M. Vedula, R.W. Heckel: in Modem Developments in Powder Metallurgy, H.H. Hausner, H.W. Antes, G.D. Smith, eds., Metal Powder Industries Federation, Princeton, NJ, 1981, vol. 12, pp. 759–77

    Google Scholar 

  6. T. Marcu, A. Molinari, G. Straffelini, S. Berg: Powder Metall., 2005, vol. 48 (2), pp. 139–43

    Article  CAS  Google Scholar 

  7. M. Hanada, N. Motooka, and T. Honda: Advances in Powder Metallurgy and Particulate Materials, compiled by J.M. Capus and R.M. German, MPIF, Princeton, NJ, 1992, vol. 5, pp. 215–26

  8. R. J. Causton: Advances in Powder Metallurgy and Particulate Materials, compiled by T.M. Cadle and K.S. Narasimhan, MPIF, Princeton, NJ, 1996, vol. 4, part 13, pp. 391–412

  9. M. Khaleghi, R. Haynes: Powder Metall., 1985, vol. 28 (4), pp. 217–23

    CAS  Google Scholar 

  10. Materials Standards for P/M Structural Parts, Metal Powder Industries Federation, Princeton, NJ, 2003, pp. 42–49

  11. M.W. Wu, K.S. Hwang, H.S. Huang, K.S. Narasimhan: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2559–68

    Article  CAS  Google Scholar 

  12. S. Carabajar, C. Verdu, R. Fougeres: Mater. Sci. Eng., 1997, vol. 232A, pp. 80–87

    Google Scholar 

  13. N. Chawla, T.F. Murphy, K.S. Narasimhan, M. Koopman, K.K. Chawla: Mater. Sci. Eng., 2001, vol. 308A, pp. 180–88

    Google Scholar 

  14. E. Dudrova, M. Kabatova, M. Kupkova: Kov. Mater. 2002, vol. 40, pp. 24–33

    CAS  Google Scholar 

  15. S.J. Polasik, J.J. Williams, N. Chawla: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 73–81

    Article  CAS  Google Scholar 

  16. S. Carabajar, C. Verdu, A. Hamel, R. Fougeres: Mater. Sci. Eng., 1998, vol. 257A, pp. 225–34

    Google Scholar 

  17. N. Chawla, S. Polasik, K.S. Narasimhan, T. Murphy, M. Koopman, K.K. Chawla: Int. J. Powder Metall., 2001, vol. 37 (3), pp. 49–57

    CAS  Google Scholar 

  18. B.A. Gething, D.F. Heaney, D.A. Koss, T.J. Mueller: Mater. Sci. Eng., 2005, vol. 390A, pp. 19–26

    Google Scholar 

  19. Z.R. He, G.X. Lin, H.A. Chen: Mater. Sci. Eng., 2001, vols. 319A–321A, pp. 312–15

    Google Scholar 

  20. M. Dollar, I.M. Bernstein, A.W. Thompson: Acta Metall., 1988, vol. 36 (2), pp. 311–20

    Article  CAS  Google Scholar 

  21. M.W. Wu, K.S. Hwang: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 3577–85

    CAS  Google Scholar 

  22. S.T. Campbell, T. Singh, and T.F. Stephenson: Advances in Powder Metallurgy and Particulate Materials, compiled by W.B. James and R.A. Chernenkoff, MPIF, Princeton, NJ, 2004, part 7, pp. 105–15

  23. H. Danninger, D. Spoljaric, B. Weiss: Int. J. Powder Metall., 1997, vol. 33 (4), pp. 43–53

    CAS  Google Scholar 

  24. W.F. Smith: Structure and Properties of Engineering Alloys, 2nd ed., McGraw-Hill Co., New York, NY, 1993, pp. 136–37

    Google Scholar 

  25. A. Moser, A. Legat: Hart. Techn. Mitt., 1969, vol. 24 (2), pp. 100–05.

    CAS  Google Scholar 

Download references

Acknowledgment

The authors thank the Lenco Co. and the National Science Council for their support of this project, under Contract No. NSC 94-2622-E-002-008-CC3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Hwang.

Additional information

Manuscript submitted September 11, 2006

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, M.W., Hwang, K.S. & Huang, H.S. In-Situ Observations on the Fracture Mechanism of Diffusion-Alloyed Ni-Containing Powder Metal Steels and a Proposed Method for Tensile Strength Improvement. Metall Mater Trans A 38, 1598–1607 (2007). https://doi.org/10.1007/s11661-007-9201-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9201-y

Keywords

Navigation