Metallurgical and Materials Transactions A

, Volume 38, Issue 8, pp 1743–1749 | Cite as

Grain Boundary Sliding during Diffusion and Dislocation Creep in a Mg-0.7 Pct Al Alloy



Early studies on grain boundary sliding (GBS) in Mg alloys have suggested frequently that the contribution of GBS to creep is high even under conditions corresponding to dislocation creep. The role of creep strain and grain size in influencing the experimental measurements has not been clearly identified. Grain boundary sliding measurements were conducted in detail over experimental conditions corresponding to diffusion creep as well as dislocation creep in a single-phase Mg-0.7 wt pct Al alloy. The results indicated clearly that the GBS contribution to creep was very high during diffusion creep at low stresses (∼75 pct) and substantially reduced during dislocation creep at high stresses (∼15 pct). These measurements were consistent with the observation of significant intragranular slip band activity observed in most grains at high stresses and very little slip band activity at low stresses. The experimental measurements and analysis indicated also that the GBS contribution to creep was high during the initial stages of creep and decreased to a steady-state value at large strains.


  1. 1.
    A.K. Mukherjee, J.E. Bird, J.E. Dorn: Trans. ASM, 1969, vol. 62, pp. 155–79Google Scholar
  2. 2.
    A.H. Chokshi, A.K. Mukherjee, T.G. Langdon: Mater. Sci. Eng. R, 1993, vol. R10, pp. 237–74CrossRefGoogle Scholar
  3. 3.
    F.R.N. Nabarro: Report of a Conference on Strength of Solids, The Physical Society, London, 1948, pp. 75–90Google Scholar
  4. 4.
    C. Herring: J. Appl. Phys., 1950, vol. 21, pp. 437–45CrossRefGoogle Scholar
  5. 5.
    R.L. Coble: J. Appl. Phys., 1963, vol. 34, pp. 1679–82CrossRefGoogle Scholar
  6. 6.
    T.G. Nieh, J. Wadsworth, O.D. Sherby: Superplasticity in Metals and Ceramics, Cambridge University Press, Cambridge, United Kingdom, 1997, pp. 32–54Google Scholar
  7. 7.
    W.A. Rachinger: J. Inst. Met., 1952–53, vol. 81, pp. 33–41Google Scholar
  8. 8.
    I.M. Lifshitz: Sov. Phys. JETP, 1963, vol. 17, pp. 909–20Google Scholar
  9. 9.
    W.R. Cannon: Phil. Mag., 1972, vol. 25, pp. 1489–97CrossRefGoogle Scholar
  10. 10.
    H. Brunner, N.J. Grant: Trans. TMS-AIME, 1960, vol. 218, pp. 122–27Google Scholar
  11. 11.
    B.L. Mordike, T. Ebert: Mater. Sci. Eng., 2001, vol. A302, pp. 37–45Google Scholar
  12. 12.
    S.L. Couling and C.S. Roberts: J. Met., 1957, Oct., pp. 1252–56Google Scholar
  13. 13.
    R.L. Bell, T.G. Langdon: J. Mater. Sci., 1967, vol. 2, pp. 313–23CrossRefGoogle Scholar
  14. 14.
    R.C. Gifkins, T.G. Langdon: Scripta Metall., 1970, vol. 4, pp. 563–67CrossRefGoogle Scholar
  15. 15.
    R.L. Bell, C. Graeme-Barber: J. Mater. Sci., 1970, vol. 5, pp. 933–44CrossRefGoogle Scholar
  16. 16.
    E.H. Aigeltinger, R.C. Gifkins: J. Mater. Sci., 1975, vol. 10, pp. 1889–1903CrossRefGoogle Scholar
  17. 17.
    D. Lee: Acta Metall., 1969, vol. 17, pp. 1057–69CrossRefGoogle Scholar
  18. 18.
    R.Z. Valiev, O.A. Kaibyshev: Phys. Status Solidi A, 1977, vol. 44, pp. 65–76CrossRefGoogle Scholar
  19. 19.
    Y.N. Wang, J.C. Huang: Scripta Mater., 2003, vol. 48, pp. 1117–22CrossRefGoogle Scholar
  20. 20.
    J.C. Tan, M.J. Tan: Mater. Sci. Eng. A, 2003, vol. 339, pp. 81–89CrossRefGoogle Scholar
  21. 21.
    J. Koike, R. Ohyama, T. Kobayashi, M. Suzuki, K. Maruyama: Mater. Trans. JIM, 2003, vol. 44, pp. 445–51CrossRefGoogle Scholar
  22. 22.
    W. Rosenhain, J.C.W. Humfrey: Proc. R. Soc. London, 1909, vol. 83, pp. 200–09Google Scholar
  23. 23.
    T.G. Langdon: J. Mater. Sci., 2006, vol. 41, pp. 597–609CrossRefGoogle Scholar
  24. 24.
    R.L. Bell, C. Graeme-Barber, T.G. Langdon: Trans. TMS-AIME, 1967, vol. 239, pp. 1821–24Google Scholar
  25. 25.
    T.G. Langdon: Metall. Trans., 1972, vol. 3, pp. 797–801CrossRefGoogle Scholar
  26. 26.
    R.C. Gifkins, A. Gittins, R.A. Bell, T.G. Langdon: J. Mater. Sci., 1968, vol. 3, pp. 306–13CrossRefGoogle Scholar
  27. 27.
    R.S. Kottada, A.H. Chokshi: Mater. Sci. Forum., 2004, vols. 447–448, pp. 227–32CrossRefGoogle Scholar
  28. 28.
    R.S. Kottada and A.H. Chokshi: unpublished research. Indian Institute of Science, Bangalore, IndiaGoogle Scholar
  29. 29.
    R. Raj, M.F. Ashby: Metall. Trans., 1971, vol. 2, pp. 1113–25CrossRefGoogle Scholar
  30. 30.
    R.C. Gifkins, T.G. Langdon, D. McLean: Met. Sci., 1975, vol. 9, pp. 141–43CrossRefGoogle Scholar
  31. 31.
    R.N. Stevens: Phil. Mag., 1971, vol. 23, pp. 265–83CrossRefGoogle Scholar
  32. 32.
    D. Lee: Metall. Trans., 1970, vol. 1, pp. 309–11CrossRefGoogle Scholar
  33. 33.
    A.H. Chokshi: Scripta Mater., 2000, vol. 42, pp. 241–48CrossRefGoogle Scholar
  34. 34.
    R.S. Kottada, A.H. Chokshi: Acta Mater., 2000, vol. 48, pp. 3905–15CrossRefGoogle Scholar
  35. 35.
    J. Bai, R. Raj: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2913–19CrossRefGoogle Scholar
  36. 36.
    G.R. Kegg, C.A.P. Horton, J.M. Silcock: Phil. Mag., 1972, vol. 27, pp. 1041–55CrossRefGoogle Scholar
  37. 37.
    H. Kokawa, T. Watanabe, S. Karashima: Phil. Mag., 1981, vol. 44, pp. 1239–54CrossRefGoogle Scholar
  38. 38.
    A.D. Sheikh-Ali, R.Z. Valiev: Scripta Metall. Mater., 1994, vol. 31, pp. 1705–10CrossRefGoogle Scholar
  39. 39.
    A.D. Sheikh-Ali: Scripta Metall. Mater., 1995, vol. 33, pp. 795–801CrossRefGoogle Scholar
  40. 40.
    U.F. Kocks, G.R. Canova: in Deformation of Polycrystals: Mechanisms and Microstructures, N. Hansen, A. Horsewell, T. Leffers, H. Lilholt, eds., Risø National Laboratory, Roskilde, Denmark, 1981, pp. 35–44Google Scholar
  41. 41.
    K.R. McNee, G.W. Greenwood, H. Jones: Scripta Mater., 2002, vol. 46, pp. 437–39CrossRefGoogle Scholar

Copyright information


Authors and Affiliations

  1. 1.Department of Materials EngineeringIndian Institute of ScienceBangaloreIndia
  2. 2.Institute für Materialforschung II (IMFII)Forschungszentrum Karlsruhe (FZK)KarlsruheGermany

Personalised recommendations