Skip to main content
Log in

Low-Cycle Fatigue Behavior of an As-Extruded AM50 Magnesium Alloy

  • SYMPOSIUM: Deformation & Fracture from Nano to Macro: Honoring W.W. Gerberich’s 70th Birthday
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

The low-cycle fatigue behavior of an as-extruded AM50 magnesium alloy has been investigated. The cyclic stress response of the alloy strongly depends on the imposed strain amplitude. It is also noted that at the higher total strain amplitudes, the alloy exhibits a pronounced anisotropic deformation behavior in the direction of tension and compression, where the width of the σ-ε hysteresis loop in the compressive direction is greater than that in the tensile direction. At the total strain amplitude of 1.5 pct, a serrated flow can be observed in both tensile and compressive directions of the σ-ε hysteresis loop. This means that dynamic strain aging takes place during fatigue deformation. The relation between elastic and plastic strain amplitudes with reversals to failure shows a monotonic linear behavior and can be well described by the Basquin and Coffin–Manson equations, respectively. In addition, crack initiation and propagation modes are suggested, based on scanning electron microscopy observations on the fracture surfaces of fatigued specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Friedrich H., Schumann S. (2001) J. Mater. Proc. Technol. 117: 276-81

    Article  CAS  Google Scholar 

  2. Kevorkijan V. (2003) Mater. Sci. Technol. 19: 1386-90

    Article  CAS  Google Scholar 

  3. Hu H., Yu A., Li N., Allison J.E. (2003) Mater. Manuf. Processes 18: 687-717

    Article  CAS  Google Scholar 

  4. Renner F., Zenner H. (2002) Fatigue Fract. Eng. Mater. Struct. 25: 1157-68

    Article  Google Scholar 

  5. Lee S.G., Patel G.R., Gokhale A.M. (2005) Scripta Mater. 52: 1063-68

    Article  CAS  Google Scholar 

  6. Mayer H., Papakyriacou M., Zettl B., Stanzl-Tschegg S.E. (2003) Int. J. Fatigue 25: 245-56

    Article  CAS  Google Scholar 

  7. Horstemeyer M.F., Yang N., Gall K., McDowell D.L., Fan J., Gullett P. (2002) Fatigue Fract. Eng. Mater. Struct. 25: 1045-56

    Article  CAS  Google Scholar 

  8. Horstemeyer M.F., Yang N., Gall K., McDowell D.L., Fan J., Gullett P. (2004) Acta Mater. 52: 1327-36

    Article  CAS  Google Scholar 

  9. Potzies C., Kainer K.U. (2004) Adv. Eng. Mater. 6: 281-89

    Article  CAS  Google Scholar 

  10. Shih T.S., Liu W.S., Chen Y.J. (2002) Mater. Sci. Eng., A, A325: 152-62

    CAS  Google Scholar 

  11. Unigovski Y., Eliezer A., Abramov E., Snir Y., Gutman E.M. (2003) Mater. Sci. Eng., A, A360: 132-39

    CAS  Google Scholar 

  12. Tokaji K., Kamakura M., Ishiizumi Y., Hasegawa N. (2004) Int. J. Fatigue 26: 1217-24

    Article  CAS  Google Scholar 

  13. Eisenmeier G., Holzwarth B., Höppel H.W., Mughrabi H. (2001) Mater. Sci. Eng. A, A319–A321: 578-82

    Google Scholar 

  14. Srivatsan T.S., Wei L., Chang C.F. (1997) Eng. Fract. Mech. 56: 735-58

    Article  Google Scholar 

  15. Goodenberger D.L., Stephens R.I. (1993) J. Eng. Mater. Technol. 115: 391-97

    CAS  Google Scholar 

  16. Venkateswaran P., Ganesh Sundara Raman S., Pathak S.D., Miyashita Y., Mutoh Y. (2004) Mater. Lett. 58: 2525-29

    Article  CAS  Google Scholar 

  17. Wolf B., Fleck C., Eifer D. (2004) Int. J. Fatigue 26: 1357-63

    Article  CAS  Google Scholar 

  18. Gall K., Biallas G., Maier H.J., Gullett P., Horstemeyer M.F., McDowell D.L., Fan J. (2004) Inter. J. Fatigue 26: 59-70

    Article  CAS  Google Scholar 

  19. Gall K., Biallas G., Maier H.J., Gullett P., Horstemeyer M.F., McDowell D.L. (2004) Metall. Mater. Trans. A 35A: 321-31

    Article  CAS  Google Scholar 

  20. Wang X.S., Lu X., Wang D.H. (2004) Mater. Sci. Eng., A, A364: 11-16

    CAS  Google Scholar 

  21. Zenner H., Renner F. (2002) Int. J. Fatigue 24: 1255-60

    Article  CAS  Google Scholar 

  22. Yoo M.H. (1981) Metall. Trans. A, 12A: 409-18

    Google Scholar 

  23. Staroselsky A., Anand L. (2003) Inter. J. Plasticity 19: 1843-64

    Article  CAS  Google Scholar 

  24. J. Enss, T. Everitz, T. Reier, P. Juchmann, S. Schumann, and W. Sebastian: Proc. 2nd Israeli Int. Conf. on Magnesium Science & Technology, 2000, Magnesium Research Institute, Beer-Sheva, Israel, pp. 19-26.

  25. Garcés P., Pérez X., Adeva P. (2005) Scripta Mater. 52: 615-19

    Article  Google Scholar 

  26. Kleiner S., Uggowitzer P.J. (2004) Mater. Sci. Eng., A, 379: 258-63

    Article  Google Scholar 

  27. Cottrell A.H. (1953) Phil. Mag. 44: 829-32

    CAS  Google Scholar 

  28. Mulford R.A., Kocks U.F. (1979) Acta Metall. 27: 1125-34

    Article  CAS  Google Scholar 

  29. Korbel A., Zasadzinski J., Sieklucka Z. (1976) Acta Metall. 24: 919-23

    Article  CAS  Google Scholar 

  30. Mikuloski B., Korbel A. (1982) Scripta Metall. 16: 1219-23

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijia Chen.

Additional information

This article is based on a presentation given in the symposium entitled “Deformation and Fracture from Nano to Macro: A Symposium Honoring W.W. Gerberich’s 70th Birthday,” which occurred during the TMS Annual Meeting, March 12–16, 2006, in San Antonio, Texas, and was sponsored by the Mechanical Behavior of Materials and Nanomechanical Behavior Committees of TMS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., Wang, C., Wu, W. et al. Low-Cycle Fatigue Behavior of an As-Extruded AM50 Magnesium Alloy. Metall Mater Trans A 38, 2235–2241 (2007). https://doi.org/10.1007/s11661-007-9181-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9181-y

Keywords

Navigation