Skip to main content
Log in

Fracture Resistance of Nanocrystalline Ni

  • SYMPOSIUM: Deformation & Fracture from Nano to Macro: Honoring W.W. Gerberich’s 70th Birthday
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Atomic level simulations are used to study crack propagation mechanisms in nanocrystalline Ni. Digital samples with a mean grain size of 5 and 8 nm containing 125 grains were used. For both grain sizes, the mechanism of crack propagation involves the formation of nanocracks along grain boundaries in the vicinity of the main crack. Crack resistance curves for the two grain sizes indicate that the smaller grain sizes are more ductile, requiring higher stress intensities for crack propagation. This result is consistent with softer behavior for smaller grain sizes in the inverse Hall–Petch regime, where deformation is accommodated by grain boundary mechanisms. The present simulations specifically show that grain boundary sliding also plays an important role in crack blunting observed in these materials. In many cases, the crack is arrested as it encounters grain boundaries in its path, showing increased resistance to propagation. Increased ductility for smaller grain sizes in this regime indicates that there is a minimum in ductility as a function of grain size in these materials, located around the 10- to 12-nm grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van Swygenhoven H., Spazer M., Caro A., Farkas D. (1999) Phys. Rev. B: Condens. Matter Mater. Phys. 60: 22-25

    Google Scholar 

  2. Kumar K.S., Van Swygenhoven H., Suresh S. (2003) Acta Mater. 51: 5743-74

    Article  CAS  Google Scholar 

  3. Schiotz J., Jacobsen K.W. (2003) Science, 301: 1357-59

    Article  CAS  Google Scholar 

  4. Yamakov V., Wolf D., Phillpot S.R., Mukherjee A.K., Gleiter H. (2002) Nat. Mater. 1: 45-48

    Article  CAS  Google Scholar 

  5. Farkas D., Van Swygenhoven H., Derlet P.M. (2002) Phys. Rev. B: Condens. Matter Mater. Phys. 66, 60101

    Google Scholar 

  6. Farkas D., Van Petegem S., Derlet P.M., Van Swygenhoven H. (2005) Acta Mater. 53: 3115-23

    Article  CAS  Google Scholar 

  7. Latapie A., Farkas D. (2004) Phys. Rev. B: Condens. Matter Mater. Phys. 69(13): 134110

    Google Scholar 

  8. Van Swygenhoven H., Farkas D., Caro A. (2000) Phys. Rev. B: Condens. Matter Mater. Phys. 62: 831-38

    Google Scholar 

  9. Mishin Y., Mehl M., Farkas D., Papaconstantopoulos D. (1999) Phys. Rev. B: Condens. Matter Mater. Phys. 59: 3393-407

    CAS  Google Scholar 

  10. S.J. Plimpton: J. Comp. Phys., 1995, vol. 117, p. 1-19, www.cs.san dia.gov/~sjplimp/lammps.html

  11. Latapie A., Farkas D. (2003) Scripta Mater. 48: 611-15

    Article  CAS  Google Scholar 

  12. Frederiksen S.L., Jacobsen K.W., Schiotz J. (2004) Acta Mater. 52: 5019-29

    Article  CAS  Google Scholar 

  13. Farkas D. (2000) Phil. Mag. Lett. 80: 229-37

    Article  CAS  Google Scholar 

  14. Li H.Q., Ebrahimi F. (2005) Adv. Mater. 17(16): 1969-72

    Article  CAS  Google Scholar 

  15. Li H.Q., Ebrahimi F. (2004) Appl. Phys. Lett. 84: 4307-09

    Article  CAS  Google Scholar 

  16. Farkas D., Hyde B. (2005) Nano Lett. 5: 2403-07

    Article  CAS  Google Scholar 

  17. Bonetti E., Campari E.G., Del Bianco L., Scipione G. (1995) Nanostruct. Mater. 6: 639-42

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Farkas.

Additional information

This article is based on a presentation given in the symposium entitled “Deformation and Fracture from Nano to Macro: A Symposium Honoring W.W. Gerberich’s 70th Birthday,” which occurred during the TMS Annual Meeting, March 12–16, 2006, in San Antonio, Texas, and was sponsored by the Mechanical Behavior of Materials and Nanomechanical Behavior Committees of TMS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farkas, D. Fracture Resistance of Nanocrystalline Ni. Metall Mater Trans A 38, 2168–2173 (2007). https://doi.org/10.1007/s11661-007-9180-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9180-z

Keywords

Navigation