Skip to main content
Log in

Crack-Tip Deformation Mechanisms in α-Fe and Binary Fe Alloys: An Atomistic Study on Single Crystals

  • SYMPOSIUM: Deformation & Fracture from Nano to Macro: Honoring W.W. Gerberich’s 70th Birthday
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Molecular statics simulations are employed using semiempirical interatomic interaction potentials to examine the near crack-tip deformation mechanisms in iron and iron alloy single crystals under pure mode-I loading. The deformation mechanisms are found to be strong functions of the crack orientation. For pure Fe systems, the sensitivity of the overall response is explored by comparing the behavior of a number of recently developed potentials. The competition between ductile and brittle responses is interpreted between the well-known Griffith and Rice criteria, but is found to be lacking in predicting a priori the qualitative failure mechanism near the crack tip. The influence of Ni and Cr additions as ordered substitutional solutes is probed at concentrations up to 9.375 at. pct, and several qualitative differences in crack-tip behavior are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leslie W. (1972). Metall. Trans. 3: 5-25

    Article  CAS  Google Scholar 

  2. Chen Y., Atteridge D., and Gerberich W. (1981). Acta Metall., 29: 1171-85

    Article  CAS  Google Scholar 

  3. Gerberich W., Chen Y., Atteridge D., and Johnson T. (1981). Acta Metall., 29: 1187-1201

    Article  CAS  Google Scholar 

  4. deCelis B., Argon A., and Yip S. (1983). J. Appl. Phys., 54: 4864-78

    Article  CAS  Google Scholar 

  5. Cheung K. and Yip S. (1994). Modelling Simul. Mater. Sci. Eng., 2: 865-92

    Article  CAS  Google Scholar 

  6. Shastry V. and Farkas D. (1996). Modelling Simul. Mater. Sci. Eng., 4: 1-21

    Article  Google Scholar 

  7. Ackland G.J., Bacon D.J., Calder A.F., and Harry T. (1997). Phil. Mag. A, 75: 713-32

    Article  CAS  Google Scholar 

  8. Ackland G.J., Mendelev M., Srolovitz D.J., and Barashev A. (2004). J. Phys. Condens. Matter, 16: S2629-S2642

    Article  CAS  Google Scholar 

  9. Mendelev M.I., Han S., Srolovitz D.J., Ackland G.J., Sun D.Y., and Asta M. (2003). Phil. Mag., 83: 3977-94

    Article  CAS  Google Scholar 

  10. G. Sih and H. Liebowitz: Fracture, Academic Press, New York, NY, 1968, vol. 2, pp. 108-30.

  11. Hoagland R. (1997). Phil. Mag. A, 76: 543-63

    Article  CAS  Google Scholar 

  12. Cleri F., Yip S., Wolf D., and Philpot S.R. (1997). Phys. Rev. Lett., 79: 1309-12

    Article  CAS  Google Scholar 

  13. Simonelli G., Pasianot R., and Savino E. (1993). Mater. Res. Soc. Symp. Proc., 291: 567-72

    CAS  Google Scholar 

  14. Voter A.F. and Chen S. (1986). Mater. Res. Soc. Symp. Proc., 82: 175-80

    Google Scholar 

  15. Farkas D., Roquueta D., Vilette A., and Ternes K. (1996). Modelling Simul. Mater. Sci. Eng., 4: 359-69

    Article  CAS  Google Scholar 

  16. Vailhe C. and Farkas D. (1998). Mater. Sci. Eng., A, 258: 26-31

    Article  Google Scholar 

  17. Rice J.R. (1992). J. Mech. Phys. Solids, 40: 239-71

    Article  CAS  Google Scholar 

  18. Farkas D., Zhou S.J., Vailhe C., Mutasa B., and Panova J. (1997). J. Mater. Res., 12: 93-99

    CAS  Google Scholar 

  19. Li J. (2003). Modelling Simul. Mater. Sci. Eng., 11: 173-77

    Article  Google Scholar 

  20. Gumbsch P. and Cannon R.M. (2000). MRS Bull., 25: 15-20

    CAS  Google Scholar 

  21. Paskin A., Som D.K., and Dienes G.J. (1981). J. Phys. C . Solid State Phys., 14: L171-L176

    Article  CAS  Google Scholar 

  22. D. Farkas, M. Mehl, and D. Papaconstantolpoulos: Materials Research Society Symp. Proc., 2001, vol. 653, pp. Z6.4.1-Z6.4.6.

  23. N. Bernstein and D. Hess: Phys. Rev. Lett., 2003, vol. 91, pp. 022501-1-022501-4.

  24. Knap J. and Sieradzki K. (1999). Phys. Rev. Lett., 82: 1700-03

    Article  CAS  Google Scholar 

  25. Zhou S., Carlsson A., and Thomson R. (1994). Phys. Rev. Lett., 72: 852-55

    Article  CAS  Google Scholar 

  26. Sun Y., Beltz G.E., and Rice J. (1993). Mater. Sci. Eng., A, 170: 67-85

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Gordon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordon, P.A., Neeraj, T., Luton, M.J. et al. Crack-Tip Deformation Mechanisms in α-Fe and Binary Fe Alloys: An Atomistic Study on Single Crystals. Metall Mater Trans A 38, 2191–2202 (2007). https://doi.org/10.1007/s11661-007-9176-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9176-8

Keywords

Navigation