Metallurgical and Materials Transactions A

, Volume 38, Issue 9, pp 2061–2071 | Cite as

Texture and Microstructure at the Surface of an AISI D2 Steel Treated by High Current Pulsed Electron Beam

  • J.X. Zou
  • T. GrosdidierEmail author
  • B. Bolle
  • K.M. Zhang
  • C. Dong


Surface modifications were investigated for an AISI D2 steel after 25 pulses of high current pulsed electron beam (HCPEB) treatment. In particular, X-ray diffraction (XRD) was used to determine the thickness, nature of phase, and texture in the top surface melted layer. The mechanisms responsible for the structure and texture evolutions were further asserted by scanning electron microscopy (SEM) and electron backscattering diffraction (EBSD) results. Under the action of the beam, the large carbides present in the steel were melted and dissolved so that the top surface rapidly solidified as a 3-μm-thick layer of ultra-fine-grained metastable austenite without any martensite formation. The growth of the γ phase led to an unusual <100> + <110> fiber solidification texture. In addition, Σ3-twin boundaries were observed to bridge, most often, near <110> domains. These features, observed here in a Fe supersaturated and highly undercooled melt, are discussed in light of recent findings on atypical growth in directionally solidified Al-based alloys.[40, 41, 42] Comparatively, the α phase present in the heat-affected zone remained randomly oriented.


Austenite Martensite Martensitic Transformation Pole Figure Orientation Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A.D. Pogrebnjak, V.T. Shablya, N.V. Sviridenko, A.N. Valyaev, S.V. Plotnikov, M.K. Kylyshkanov: Surf. Coat. Technol., 1999, vol. 111, pp. 46–50CrossRefGoogle Scholar
  2. 2.
    M. Sorescu: J. Alloys Compd., 1998, vol. 280 (1–2), pp. 251–54CrossRefGoogle Scholar
  3. 3.
    A.D. Pogrebnjak, V.S. Ladysev, N.A. Pogrebnjak, A.D. Michaliov, V.T. Shablya, A.N. Valyaev, A.A. Valyaev, V.B. Loboda: Vacuum, 2000, vol. 58, pp. 45–52CrossRefGoogle Scholar
  4. 4.
    X.Y. Le, S. Yan, W.J. Zhao, B.X. Han, Y.G. Wang, J.M. Xue: Surf. Coat. Technol., 2000, vols. 128–129, pp. 381–86Google Scholar
  5. 5.
    A.B. Markov, V.P. Rotshtein: Nucl. Instrum. Meth. Phys. Res. B, 1997, vol. 132, pp. 79–86CrossRefGoogle Scholar
  6. 6.
    D.I. Proskurovsky, V. Rotshtein, G.E. Ozur, A.B. Markov, D.S. Nazarov: J. Vac. Sci. Technol. A, 1998, vol. 1694, pp. 2480–88CrossRefGoogle Scholar
  7. 7.
    A.D. Pogrebnjak, S. Bratushka, V.I. Boyko, I.V. Shamanin, Y.V. Tsvintarnaya: Nucl. Instrum. Meth. Phys. Res. B, 1998, vol. 145, pp. 373–91CrossRefGoogle Scholar
  8. 8.
    C. Dong, A. Wu, S. Hao, J. Zou, Z. Liu, P. Zhong, A. Zhang, T. Xu, J. Chen, J. Xu, Q. Liu, Z. Zhou: Surf. Coat. Technol., 2003, vols. 163–164, pp. 620–24CrossRefGoogle Scholar
  9. 9.
    D.I. Proskurovsky, V. Rotshtein, G.E. Ozur, Yu. F. Ivanov, A.B. Markov: Surf. Coat. Technol., 2000, vol. 125, pp. 49–56CrossRefGoogle Scholar
  10. 10.
    J.X. Zou, A.M. Wu, C. Dong, S.Z. Hao, Z.M. Liu, H.T. Ma: Surf. Coat. Technol., 2004, vol. 184, pp. 261–67CrossRefGoogle Scholar
  11. 11.
    S.Z. Hao, B. Gao, A.M. Wu, J.X. Zou, Y. Qin, C. Dong, J. An, Q.F. Guan: Nucl. Instrum. Meth. Phys. Res. B, 2005, vol. 240, pp. 646–52CrossRefGoogle Scholar
  12. 12.
    Y. Ivanov, W. Matz, V. Rotshtein, R. Gunzel, N. Shevchenko: Surf. Coat. Technol., 2003, vol. 150, pp. 188–98CrossRefGoogle Scholar
  13. 13.
    International Tables for X-ray Crystallography, Birmingham, England 1974, vol. 4, p. 62Google Scholar
  14. 14.
    K.M. Zhang, J.X. Zou, T. Grosdidier, N. Gey, D.Z. Yang, S.Z. Hao, C. Dong: J. Alloys Comp., 2007, vol. 434–435, pp. 682–85CrossRefGoogle Scholar
  15. 15.
    J.X. Zou, T. Grosdidier, and C. Dong: unpublished research, LETAM, University of Metz, 2006Google Scholar
  16. 16.
    J.X. Zou, Y. Qin, C. Dong, S.Z. Hao, A.M. Wu, X.G. Wang: J. Vac. Sci. Technol. A, 2004, vol. 22 (3), pp. 545–52CrossRefGoogle Scholar
  17. 17.
    Y. Qin, C. Dong, X.G. Wang, S.Z. Hao, A.M. Wu, J.X. Zou, Y. Liu: J. Vac. Sci. Technol. A, 2003, vol. 21 (6), pp. 1934–38CrossRefGoogle Scholar
  18. 18.
    Y. Qin, J.X. Zou, C. Dong, X.G. Wang, A.M. Wu, Y. Liu, S.Z. Hao, Q.F. Guan: Nucl. Instrum. Meth. Phys. Res. B, 2004, vol. 225, pp. 544–54CrossRefGoogle Scholar
  19. 19.
    N.H. Pryds, J.H. Hattel: Mater. Sci. Eng. A, 1998, vol. 251, pp. 23–29CrossRefGoogle Scholar
  20. 20.
    S.R. Chen, H.A. Davies, W.M. Rainforth: Acta Mater., 1999, vol. 47, pp. 4555–69CrossRefGoogle Scholar
  21. 21.
    A.E. Nehrenberg: Trans. AIME, 1945, vol. 167, pp. 494–501Google Scholar
  22. 22.
    K.W. Andrews: JISI, 1965, vol. 203, pp. 721–27Google Scholar
  23. 23.
    T. Sourmail, C. Garcia-Mateo: Comp. Mater. Sci., 2005, vol. 34, pp. 213–18CrossRefGoogle Scholar
  24. 24.
    J.X. Zou, T. Grosdidier, K.M. Zhang, B. Gao, S.Z. Hao, C. Dong: J. Alloys Compd., 2007, vol. 434–435, pp.707–09CrossRefGoogle Scholar
  25. 25.
    J.X. Zou, T. Grosdidier, K.M. Zhang, C. Dong: Acta Mater., 2006, vol. 54, pp. 5409–19CrossRefGoogle Scholar
  26. 26.
    S. Kajiwara, S. Ohno, K. Honma: Phil. Mag. A, 1991, vol. 63, pp. 625–44CrossRefGoogle Scholar
  27. 27.
    G.N. Haidemenopoulos, M. Grujicic, G.B. Olson, M. Cohen: J. Alloy Compd., 1995, vol. 220, pp. 142–47CrossRefGoogle Scholar
  28. 28.
    T. Grosdidier, E. Gautier, Y. Combres, M.J. Philippe: Metall. Mater. Trans. A, 2000, vol. 31, pp. 1095–1106CrossRefGoogle Scholar
  29. 29.
    Q.P. Meng, Y.H. Rong, T.Y. Hsu: Phys. Rev. B, 2002, vol. 65, pp. 174111–174118CrossRefGoogle Scholar
  30. 30.
    J.X. Zou, K.M. Zhang, C. Dong, Y. Qin, S.Z. Hao, T. Grosdidier: Appl. Phys. Lett., 2006, vol. 89, p. 041913CrossRefGoogle Scholar
  31. 31.
    H. Jones: Rapid Solidification of Metals and Alloys, Institution of Metallurgists, London, 1982Google Scholar
  32. 32.
    S. Henry, T. Minghetti, M. Rappaz: Acta Mater., 1998, vol. 46, pp. 6431–43CrossRefGoogle Scholar
  33. 33.
    A. Semoroz, Y. Durandet, M. Rappaz: Acta Mater., 2001, vol. 49, pp. 529–41CrossRefGoogle Scholar
  34. 34.
    U.F. Kocks, C.N. Tome, H.K. Wenk: Texture and Anisotropy, Cambridge University Press, Cambridge, United Kingdom, 1998, pp. 232–35Google Scholar
  35. 35.
    M.E. Glicksman, R.J. Schaefer, J.D. Ayers: Metall. Trans. A, 1976, vol. 7A, pp. 1747–59Google Scholar
  36. 36.
    T. Sato, W. Kurz, K. Ikawa: Trans. Jpn. Inst. Met., 1987, vol. 28 (12), pp. 1012–21Google Scholar
  37. 37.
    S.K. Chan, H.H. Reimer, M. Kahlweit: J. Cryst. Growth, 1976, vol. 32, pp. 303–15CrossRefGoogle Scholar
  38. 38.
    E. Ben-Jacob, P. Garik: Nature, 1990, vol. 343, pp. 523–30CrossRefGoogle Scholar
  39. 39.
    E. Ben-Jacob, R. Godbey, N.D. Goldenfeld, J. Koplik, H. Levine, T. Mueller, L.M. Sander: Phys. Rev. Lett., 1985, vol. 55 (12), pp. 1315–18CrossRefGoogle Scholar
  40. 40.
    S. Henry, P. Jarry, M. Rappaz: Metall. Mater. Trans. A, 1998, vol. 29, pp. 2807–17CrossRefGoogle Scholar
  41. 41.
    T. Haxhimali, A. Karma, F. Gonzales, M. Rappaz: Nat. Mater., 2006, vol. 5, pp. 660–64CrossRefGoogle Scholar
  42. 42.
    F. Gonzales, M. Rappaz: Metall. Mater. Trans. A, 2006, vol. 37, pp. 2797–806CrossRefGoogle Scholar

Copyright information


Authors and Affiliations

  • J.X. Zou
    • 1
    • 2
  • T. Grosdidier
    • 1
    Email author
  • B. Bolle
    • 1
  • K.M. Zhang
    • 2
  • C. Dong
    • 2
    • 3
  1. 1.Laboratoire d’Etude des Textures et Applications aux Matériaux (LETAM, UMR-CNRS 7078)Université Paul Verlaine MetzIle du SaulcyFrance
  2. 2.State Key Laboratory of Materials Modification & School of Materials Science and EngineeringDalian University of TechnologyDalianP.R. China
  3. 3.International Center for Materials PhysicsChinese Academy of SciencesShenyangP.R. China

Personalised recommendations