Skip to main content
Log in

Heat Transfer and Fluid Flow during Gas-Metal-Arc Fillet Welding for Various Joint Configurations and Welding Positions

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Gas-metal-arc (GMA) fillet welding is one of the most commonly used welding processes in the industry. This welding process is characterized by the complex joint geometry, a deformable weld pool surface, and the addition of hot metal droplets. In this work, a three-dimensional numerical heat-transfer and fluid-flow model is developed to capture the effects of the tilt angle of the fillet joint and the welding positions, i.e., V, L, and other configurations on the temperature profiles, velocity fields, weld pool shape, weld pool free surface profile, thermal cycles, and cooling rates during GMA welding in spray mode. The governing equations of conservation of mass, momentum, and energy are solved using a boundary fitted curvilinear coordinate system. The weld pool free surface deformation is calculated by minimizing the total surface energy. A dimensional analysis is performed to understand the importance of heat transfer by conduction and convection and the role of various driving forces on convection in the liquid weld pool. The computed shape and size of the fusion zone, finger penetration characteristic of the GMA welds, and the solidified free surface profile are in fair agreement with the corresponding experimental results. The calculated cooling rates are also in good agreement with independent experimental data. The results reported here indicate a significant promise for understanding the effect of joint orientations and welding positions on weld pool shape, size, and the cooling rates based on fundamental principles of transport phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. W. Zhang, C.H. Kim, T. DebRoy: J. Appl. Phys., 2004, vol. 95, pp. 5210–19

    Article  CAS  Google Scholar 

  2. W. Zhang, C.H. Kim, T. DebRoy: J. Appl. Phys., 2004, vol. 95, pp. 5220–29

    Article  CAS  Google Scholar 

  3. A. Kumar, T. DebRoy: Metall. Mater. Trans. A, 2005, vol. 36 (10), pp. 2725–35.

    Article  Google Scholar 

  4. W. Zhang, G.G. Roy, J.W. Elmer, T. DebRoy: J. Appl. Phys., 2003, vol. 93, pp. 3022–33.

    Article  CAS  Google Scholar 

  5. M.C. Tsai, S. Kou: Weld. J., 1990, vol. 69, pp. 241s–46s

    Google Scholar 

  6. K. Hong, D.C. Weckmann, A.B. Strong, W. Zheng: Sci. Technol. Weld. Join., 2002, vol. 7, pp. 125–36

    Article  CAS  Google Scholar 

  7. K. Mundra, T. DebRoy, K. Kelkar: Numer. Heat Transfer A, 1996, vol. 29, pp. 115–29

    CAS  Google Scholar 

  8. Z. Yang, J.W. Elmer, J. Wong, T. DebRoy: Weld. J., 2000, vol. 79, pp. 97s–112s

    Google Scholar 

  9. Z. Yang, S. Sista, J.W. Elmer, T. DebRoy: Acta Mater., 2000, vol. 48, pp. 4813–25

    Article  CAS  Google Scholar 

  10. T. Hong, W. Pitscheneder, T. DebRoy: Sci. Technol. Weld. Join., 1998, vol. 3, pp. 33–41

    CAS  Google Scholar 

  11. R.T.C. Choo, J. Szekely: Weld. J., 1994, vol. 73, pp. 25–31

    Google Scholar 

  12. J.F. Lancaster: The Physics of Welding, 2nd ed., Pergamon, Oxford, United Kingdom, 1986, pp. 49–94

    Google Scholar 

  13. C.S. Wu, L. Dorn: Comput. Mater. Sci., 1994, vol. 2, pp. 341–50

    Article  CAS  Google Scholar 

  14. J.W. Kim, S.J. Na: Weld. J., 1995, vol. 74, pp. 141–52

    Google Scholar 

  15. Z.N. Cao, P. Dong: J. Eng. Mater. Technol., 1998, vol. 120, pp. 313–20

    CAS  Google Scholar 

  16. H.G. Fan, R. Kovacevic: J. Phys. D: Appl. Phys., 1998, vol. 31, pp. 2929–41

    Article  CAS  Google Scholar 

  17. Y. Wang, H.L. Tsai: Metall. Mater. Trans. B, 2001, vol. 32, pp. 501–15

    Article  Google Scholar 

  18. C.H. Kim, W. Zhang, T. DebRoy: J. Appl. Phys., 2003, vol. 94, pp. 2667–79

    Article  CAS  Google Scholar 

  19. S. Kumar, S.C. Bhaduri: Metall. Mater. Trans. B, 1994, vol. 25, pp. 435–41

    Google Scholar 

  20. S.-K. Jeong, H.-S. Cho: Welding J., 1997, vol. 76 (6), pp. 223–32

    Google Scholar 

  21. S.-H. Cho, J.-W. Kim: Sci. Technol. Weld. Join., 2001, vol. 6 (4), pp. 220–24

    Article  Google Scholar 

  22. W.A. Bowditch, K.E. Bowditch: Welding Technology Fundamentals, 2nd ed., The Goodheart–Willcox Company, Tinley Park, IL, 1997, pp. 64–82

    Google Scholar 

  23. V.R. Voller, C. Prakash: Int. J. Heat Mass Transfer, 1987, vol. 30, pp. 1709–19

    Article  CAS  Google Scholar 

  24. A.D. Brent, V.R. Voller, K.J. Reid: Numer. Heat Transfer A, 1988, vol. 13, pp. 297–318

    Google Scholar 

  25. A. Kumar, T. DebRoy: J. Appl. Phys., 2003, vol. 94, pp. 1267–77

    Article  CAS  Google Scholar 

  26. S. Kou, D.K. Sun: Metall. Trans. A, 1985, vol. 16A, pp. 203–12

    CAS  Google Scholar 

  27. S. Rhee, E. Kannatey-Asibu Jr.: Weld. J., 1992, vol. 71, pp. 381–86

    Google Scholar 

  28. L.A. Jones, T.W. Eagar, J.H. Lang: J. Phys. D: Appl. Phys., 1998, vol. 31, pp. 107–23

    Article  CAS  Google Scholar 

  29. P. Sahoo, T. DebRoy, M.J. McNallan: Metall. Trans. B, 1988, vol. 19B, pp. 483–91

    CAS  Google Scholar 

  30. W. Pitscheneder, T. DebRoy, K. Mundra, R. Ebner: Welding J., 1996, vol. 75, pp. 71s–80s

    Google Scholar 

  31. M.L. Lin, T.W. Eagar: Metall. Trans. B, 1986, vol. 17B, pp. 601–07

    Google Scholar 

  32. Y.S. Kim, T.W. Eagar: Weld. J., 1991, vol. 70, pp. 20–31

    Google Scholar 

  33. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling: Numerical Recipes in FORTRAN, 2nd ed., Cambridge University Press, Cambridge, United Kingdom, 1992, pp. 855–64

    Google Scholar 

  34. K.A. Hoffmann, S.T. Chiang: Computational Fluid Dynamics for Engineering–Vol. II, Engineering Education System, Wichita, KS, 1993, pp. 124–87

    Google Scholar 

  35. J.F. Thompson, Z.U.A. Warsi, C.W. Mastin: Numerical Grid Generation: Foundations and Applications, Elsevier Science, New York, NY, 1985, pp. 45–94

    Google Scholar 

  36. S.V. Patankar: Numerical Heat Transfer and Fluid Flow, 2nd ed., Hemisphere Publishing, New York, NY, 1982, pp. 41–71

    Google Scholar 

  37. E.A. Brandes, G.B. Brook: Smithells Metals Reference Book, 7th ed., Butterworth-Heinemann, Oxford, United Kingdom, 1992, pp. 1430–43

    Google Scholar 

  38. N. Kang, T.A. Mahank, A.K. Kulkarni, J. Singh: J. Mater. Manuf. Proc., 2003, vol. 18 (2), pp. 169–80.

    Article  CAS  Google Scholar 

  39. K. Masubuchi: Analysis of Welded Structures, 1st ed., Pergamon, Oxford, United Kingdom, 1980, pp. 74–98

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kumar.

Additional information

Manuscript submitted June 22, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, A., DebRoy, T. Heat Transfer and Fluid Flow during Gas-Metal-Arc Fillet Welding for Various Joint Configurations and Welding Positions. Metall Mater Trans A 38, 506–519 (2007). https://doi.org/10.1007/s11661-006-9083-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-9083-4

Keywords

Navigation